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Abstract. We give an explicit representation of the quadratic closure of 𝐹(2), the field
with 2 elements. This representation enjoys nice recursive definitions for all operations,
which we hope have a practical interest. We also establish nice algebraic properties of the
construction.

1. Introduction

We give a construction of the quadratic closure of 𝐹(2) by a sequence of splitting field
of degree 2. The point is that we can choose a simple sequence of polynomials that are
always irreducible (see definition 2).

We proceed by defining two sequences of elements (𝜌𝑘)𝑘∈ℕ∗ and (𝜇𝑘)𝑘∈ℕ with 𝜌𝑘, 𝜇𝑘 ∈
𝐹(22𝑘), 𝜌𝑘 being one of the root of 𝑥2 + 𝑥 + 𝜇𝑘. We have some precise information about
these elements and their construction which can be summarised in figure 1.

We obtain nice recursive definitions of all operations including square root and solutions
of 𝑥2 + 𝑥 + 𝑎 = 0. However, this operation are efficient asymptotically, but not as efficient
as the best available implementations. We think the main reason is because we did not
find a way to use the instruction for multiplication without carry available on modern
processors that allow very fast polynomial and matrix multiplication in characteristic 2.

Nevertheless we think we gain some geometrical knowledge of the quadratic closure of
𝐹(2) that may have some applications...

2. Construction

Notation 1. For 𝑘 ∈ ℕ, we denote by 𝕂𝑘 the field 𝐹(22𝑘) and 𝕂 = ⋃𝑘∈ℕ 𝕂𝑘 the quadratic
closure1 of 𝕂0 = 𝐹(2).
Definition 2. We define by induction 𝜇𝑘 ∈ 𝕂𝑘 for 𝑘 ≥ 0, 𝑇𝑘 ∈ 𝕂𝑘[𝑋] for 𝑘 ≥ 0 and
𝜌𝑘, 𝜌𝑘 ∈ 𝕂𝑘 for 𝑘 ≥ 1.

• 𝜇0 = 1 ∈ 𝕂0 and
• for 𝑘 ≥ 0: 𝑇𝑘 = 𝑋2 + 𝑋 + 𝜇𝑘 ∈ 𝕂𝑘[𝑋].

E-mail address: christophe@raffalli.eu, christophe.raffalli@upf.pf.
1In general, quadraticaly closed means that all elements have square roots. In characteristic 2, quadrat-

icaly closed means that all polynomials of degree 2 have roots. Indeed, the existence of square roots is
always true and therefore not sufficient.
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• For 𝑘 > 0, 𝜌𝑘 ∈ 𝕂𝑘 is one of the root of the polynomial 𝑇𝑘−1,
• 𝜌𝑘 = 1 + 𝜌𝑘 the other root of 𝑇𝑘−1 and
• 𝜇𝑘 = 𝜌−1

𝑘 + 1 ∈ 𝕂𝑘.

We first prove the following facts for 𝑘 > 0:

Fact 3.
(1) 𝜌𝑘𝜌𝑘 = 𝜇𝑘−1
(2) 𝜌𝑘𝜇𝑘 = 𝜌𝑘 which is equivalent to 𝜌𝑘𝜌−1

𝑘 = 𝜇−1
𝑘 .

(3) 𝜌2
𝑘 = 𝜇−1

𝑘 𝜇𝑘−1 and 𝜌2
𝑘 = 𝜇𝑘𝜇𝑘−1

(4) 𝜇−1
𝑘 = 𝜌2

𝑘𝜇−1
𝑘−1 = 𝜇−1

𝑘−1𝜌𝑘 + 1 and 𝜇𝑘 = 𝜌2
𝑘𝜇−1

𝑘−1 = 𝜇−1
𝑘−1𝜌𝑘 + 1

(5) The polynomial 𝑇𝑘 is irreducible in 𝕂𝑘.
(6) 𝜌𝑘, 𝜌𝑘, 𝜇𝑘 ∈ 𝕂𝑘 ∖ 𝕂𝑘−1.

Proof.
(1) Because 𝜌𝑘 and 𝜌𝑘 are the two roots of 𝑇𝑘−1.
(2) By definition of 𝜇𝑘, 𝜌𝑘𝜇𝑘 = 1 + 𝜌𝑘 = 𝜌𝑘.
(3) Multiplying the equation 𝜌𝑘𝜌𝑘 = 𝜇𝑘−1 and 𝜌𝑘𝜌−1

𝑘 = 𝜇−1
𝑘 gives 𝜌2

𝑘 = 𝜇−1
𝑘 𝜇𝑘−1 and

multiplying the first by the inverse of the second yields 𝜌2
𝑘 = 𝜇𝑘𝜇𝑘−1.

(4) Immediate from the previous item and the fact that 𝜌𝑘 and 𝜌𝑘 are the roots of 𝑇𝑘−1
and therefore satisfies 𝜌2

𝑘 = 𝜌𝑘 + 𝜇𝑘−1 and 𝜌2
𝑘 = 𝜌𝑘 + 𝜇𝑘−1.

(5) We have

(𝑎1 + 𝑎2𝜌𝑘)𝜇𝑘 = (𝑎1 + 𝑎2𝜌𝑘)(𝜇−1
𝑘−1𝜌𝑘 + 1)

= 𝑎1𝜇−1
𝑘−1𝜌𝑘 + 𝑎1 + 𝑎2𝜇−1

𝑘−1𝜌𝑘𝜌𝑘 + 𝑎2𝜌𝑘
= 𝑎1𝜇−1

𝑘−1𝜌𝑘 + 𝑎1𝜇−1
𝑘−1 + 𝑎1 + 𝑎2 + 𝑎2𝜌𝑘

= (𝜇−1
𝑘−1 + 1)𝑎1 + 𝑎2 + (𝜇−1

𝑘−1𝑎1 + 𝑎2)𝜌𝑘

Therefore, the matrix of the multiplication by 𝜇𝑘 seen as an element of the 𝕂𝑘−1
vector space and written in the basis (1, 𝜌𝑘) is:

(𝜇−1
𝑘−1 + 1 1
𝜇−1

𝑘−1 1)

This allows to relate the trace of 𝜇𝑘 and 𝜇−1
𝑘−1:

𝑇 𝑟(𝜇𝑘) = 𝑇 𝑟(𝜇−1
𝑘−1)

Similarly,

(𝑎1 + 𝑎2𝜌𝑘)𝜇−1
𝑘 = (𝑎1 + 𝑎2𝜌𝑘)(𝜇−1

𝑘−1𝜌𝑘 + 1)
= 𝑎1 + 𝑎1𝜌𝑘𝜇−1

𝑘−1 + 𝑎2𝜌𝑘 + 𝑎2𝜌2
𝑘𝜇−1

𝑘−1
= 𝑎1 + 𝑎1𝜌𝑘𝜇−1

𝑘−1 + 𝑎2𝜌𝑘 + 𝑎2𝜌𝑘𝜇−1
𝑘−1 + 𝑎2

= 𝑎1 + 𝑎2 + (𝜇−1
𝑘−1𝑎1 + (𝜇−1

𝑘−1 + 1)𝑎2)𝜌𝑘
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Therefore, the multiplication by 𝜇−1
𝑘 in the basis (1, 𝜌𝑘) is:

( 1 1
𝜇−1

𝑘−1 𝜇−1
𝑘−1 + 1)

This gives:
𝑇 𝑟(𝜇−1

𝑘 ) = 𝑇 𝑟(𝜇−1
𝑘−1)

As we have 𝜇0 = 1, This establishes that 𝑇 𝑟(𝜇𝑘) = 𝑇 𝑟(𝜇−1
𝑘 ) = 1 and therefore that

𝑇𝑘 is irreducible.
(6) Immediate from the fact that 𝑇𝑘 is irreducible. □

3. Complexity of the base algorithms

Notation 4. For the implementation, we represent an element 𝑎 ∈ 𝕂 by a pair (𝑘, 𝑠(𝑎))
such that 𝑎 ∈ 𝕂𝑘 and 𝑠(𝑎) is a bit sequence of length 2𝑘, with the following rules

• If 𝑘 = 0, then 𝑠(𝑎) = 𝑎 ∈ 𝕂0 = {0, 1}
• If 𝑘 > 0, we can write 𝑎 = 𝑎1 + 𝑎2𝜌𝑘 and we impose 𝑠(𝑎) = 𝑠(𝑎1) ∥ 𝑠(𝑎2) where the

symbol ∥ represents the concatenation of bit sequences.
We say that the representation is normal if 𝑘 is minimal.

This representation allows to decompose an element 𝑎 of 𝕂𝑛+1 as 𝑎1 +𝑎2𝜌𝑘 in time 𝑂(1)
if we return a pointer within the bit sequence 𝑠(𝑎).
3.1. Addition (𝑂(2𝑘)). Addition is straightforward using xor as we have 𝑎1 +𝑎2𝜌𝑘 +𝑏1 +
𝑏2𝜌𝑘 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝜌𝑘.

3.2. Multiplication by 𝜇𝑘 and 𝜇−1
𝑘 .

Corollary 5. (of the proof of facts 3) From the matrices of 𝜇𝑘 and 𝜇−1
𝑘 above we derive the

following formula to multiply by 𝜇𝑘 and 𝜇−1
𝑘 an element of 𝕂𝑘 written in the basis (1, 𝜌𝑘):

(𝑎1 + 𝑎2𝜌𝑘)𝜇−1
𝑘 = (𝑎1 + 𝑎2) + ((𝑎1 + 𝑎2)𝜇−1

𝑘 + 𝑎2)𝜌𝑘
(𝑎1 + 𝑎2𝜌𝑘)𝜇𝑘 = 𝑎1𝜇−1

𝑘 + 𝑎1 + 𝑎2 + (𝑎1𝜇−1
𝑘 + 𝑎2)𝜌𝑘

This gives the following recursive algorithm for the multiplication by 𝜇−1
𝑘 :

Input: 𝑙, 𝑘 ∈ ℕ, 𝑎 ∈ 𝕂𝑙
Output: 𝑎𝜇−1

𝑘 ∈ 𝕂max(𝑘,𝑙)
• If 𝑙 < 𝑘, return (𝑎 + 𝑎𝜇−1

𝑘−1) + 𝑎𝜇−1
𝑘−1𝜌𝑘

• If 𝑙 > 𝑘 and 𝑎 = 𝑎1 + 𝑎2𝜌𝑙, return 𝑎1𝜇−1
𝑘 + 𝑎2𝜇−1

𝑘 𝜌𝑙
• If 𝑙 = 𝑘 and 𝑎 = 𝑎1 + 𝑎2𝜌𝑙, return (𝑎1 + 𝑎2) + ((𝑎1 + 𝑎2)𝜇–1

𝑘−1 + 𝑎2)𝜌𝑘

Figure 2. Multiplication by 𝜇−1
𝑘

This algorithm is correct from 𝜇−1
𝑘 = 𝜌𝑘𝜇−1

𝑘−1 + 1 in fact 3 and the equation for (𝑎1 +
𝑎2𝜌𝑘)𝜇−1

𝑘 within the proof of the same fact.
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For the multiplication by 𝜇𝑘 we get the following similar algorithm, using the previous
one:

Input: 𝑙, 𝑘 ∈ ℕ, 𝑎 ∈ 𝕂𝑙
Output: 𝑎𝜇𝑘 ∈ 𝕂max(𝑘,𝑙)

• If 𝑙 < 𝑘, return (𝑎 + 𝑎𝜇𝑘−1) + 𝑎𝜇𝑘−1𝜌𝑘
• If 𝑙 > 𝑘 and 𝑎 = 𝑎1 + 𝑎2𝜌𝑙, return 𝑎𝜇𝑘 = 𝑎1𝜇𝑘 + 𝑎2𝜇𝑘𝜌𝑙
• If 𝑙 = 𝑘 and 𝑎 = 𝑎1 + 𝑎2𝜌𝑙, return (𝑎1𝜇−1

𝑘−1 + 𝑎1 + 𝑎2) + (𝑎1𝜇–1
𝑘−1 + 𝑎2)𝜌𝑘

Figure 3. Multiplication by 𝜇𝑘

Fact 6. The recursive algorithm for multiplication of 𝑎 ∈ 𝕂𝑙 by 𝜇𝑘 and 𝜇−1
𝑘 have a

complexity 𝑂(2max(𝑘,𝑙)), which is linear in the size 2𝑙 of the representation of 𝑎 when
𝑙 > 𝑘, which is the commonly used case for this algorithm.

Proof. Indeed, if 𝑙 ≤ 𝑘, there is only one recursive call on a data which is half smaller, and
this is linear in the size of the data. If 𝑙 > 𝑘 we have two recursive calls, but we see that
we only have to do 2𝑙−𝑘 multiplication of elements of 𝕂𝑘 by 𝜇−1

𝑘 , giving a complexity of
𝑂(2𝑙−𝑘2𝑘) = 𝑂(2𝑙). □

3.3. Multiplication. We have
(𝑎1 + 𝑎2𝜌𝑘)(𝑏1 + 𝑏2𝜌𝑘) = 𝑎1𝑏1 + (𝑎1𝑏2 + 𝑎2𝑏1)𝜌𝑘 + 𝑎2𝑏2𝜌2

𝑘
= 𝑎1𝑏1 + 𝑎2𝑏2𝜇𝑘−1 + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2)𝜌𝑘
= 𝑎1𝑏1 + 𝑎2𝑏2𝜇𝑘−1 + ((𝑎1 + 𝑎2)(𝑏1 + 𝑏2) + 𝑎1𝑏1)𝜌𝑘

Input: 𝑘, 𝑙 ∈ ℕ, 𝑎 ∈ 𝕂𝑘 and 𝑏 ∈ 𝕂𝑙
Output: 𝑎𝑏 ∈ 𝕂max 𝑘,𝑙
If needed, we decompose 𝑎 = 𝑎1 + 𝑎2𝜌𝑘 and 𝑏 = 𝑏1 + 𝑏2𝜌𝑙

• If 𝑙 < 𝑘, we return 𝑎𝑏1 + 𝑎𝑏2𝜌𝑘
• If 𝑙 > 𝑘, we return 𝑎1𝑏 + 𝑎1𝑏𝜌𝑙
• If 𝑙 = 𝑘, we return 𝑎1𝑏1 + 𝑎2𝑏2𝜇𝑘−1 + ((𝑎1 + 𝑎2)(𝑏1 + 𝑏2) + 𝑎1𝑏1)𝜌𝑘

Figure 4. Multiplication algorithm

Fact 7. The complexity our recursive algorithm for multiplication of 𝑎 ∈ 𝕂𝑙 by 𝑏 ∈ 𝕂𝑘 is
𝑂(2ln2(3) min(𝑙,𝑘)2max(𝑙,𝑘)−min(𝑙,𝑘)).
Proof. When 𝑙 = 𝑘 there are 3 recursive calls on data that are half smaller and (recall that
multiplication by 𝜇𝑘 and addition are linear). This leads to a Karatsuba like complexity.

When 𝑙 > 𝑘 (resp. 𝑘 > 𝑙), we have to do 2𝑙−𝑘 (resp. 2𝑘−𝑙) multiplications in 𝕂𝑙 (resp.
𝕂𝑘). □
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3.4. Inverse. For the inverse of 𝑎1 + 𝑎2𝜌𝑘, we inverse the multiplication matrix

(𝑎1 𝑎2𝜇𝑘
𝑎2 𝑎1 + 𝑎2

)
−1

= (𝑎1(𝑎1 + 𝑎2) + 𝑎2
2𝜇𝑘)−1 (𝑎1 + 𝑎2 𝑎2𝜇𝑘

𝑎2 𝑎1
)

The first column of the inverse gives the inverse of 𝑎1 + 𝑎2𝜌𝑘 and leads to the following
algorithm:

Input: 𝑘 ∈ ℕ, and 𝑎 ∈ 𝕂𝑘
Output: 𝑎−1 ∈ 𝕂𝑘

• If 𝑘 = 0, we return 1 if 𝑎 = 1 otherwise produce an error.
• If 𝑘 > 0, we decompose 𝑎 = 𝑎1 + 𝑎2𝜌𝑘, compute Δ = 𝑎1(𝑎1 + 𝑎2) + 𝑎2

2𝜇𝑘
the determinant of the multiplication matrix (the norm of 𝑎) and return
Δ−1(𝑎1 + 𝑎2 + 𝑎2𝜌𝑘)

Figure 5. Algorithm for the inverse

As there is only one recursive call, the complexity is dominated by the 3 multiplications:
𝑎1(𝑎1 + 𝑎2), Δ−1(𝑎1 + 𝑎2) and Δ−1𝑎2.

3.5. Square and square root. To compute the square and square root, we use

(𝑎1 + 𝑎2𝜌𝑘)2 = 𝑎2
1 + 𝑎2

2𝜌2
𝑘

= 𝑎2
1 + 𝑎2

2𝜇𝑘−1 + 𝑎2
2𝜌𝑘

√𝑎1 + 𝑎2𝜌𝑘 = √𝑎1 + 𝑎2𝜇𝑘−1 + √𝑎2𝜌𝑘by inverting the above

It is immediate to get recursive algorithm of complexity 𝑂(𝑘2𝑘) from these equations.
We could hope for a linear 𝑂(2𝑘) algorithm, which we could not obtain.

3.6. Trace. From the computation of subsection 3.3, we have that the multiplication by
𝑎1 + 𝑎2𝜌𝑘 has the following matrix in the basis (1, 𝜌𝑘):

(𝑎1 𝑎2𝜇𝑘
𝑎2 𝑎1 + 𝑎2

)

Therefore, because traces are composable, we have 𝑇 𝑟(𝑎1 + 𝑎2𝜌𝑘) = 𝑇 𝑟(𝑎1 + 𝑎1 + 𝑎2) =
𝑇 𝑟(𝑎2). This ensures that the trace of 𝑎 ∈ 𝕂𝑘 (over F(2)) is the last (right most) bit of
the representation of 𝑎. This is clearly 𝑂(1).

If we want the trace of 𝑎 ∈ 𝕂𝑘 over 𝕂𝑙, we only have to retain the 2𝑙 rightmost bits of
the representation of 𝑎 over 2𝑘 bits.

3.7. Solving 𝑋2 +𝑋 +𝑎 = 0. We know that in characteristic 2, any degree 2 equation can
be reduced either to the computation of a square root or the resolution of 𝑋2 +𝑋 +𝑏2 = 0.

From the computation of the square, we know that

(𝑎1 + 𝑎2𝜌𝑘)2 + 𝑎1 + 𝑎2𝜌𝑘 = 𝑎2
1 + 𝑎2

2𝜇𝑘−1 + 𝑎1 + (𝑎2
2 + 𝑎2)𝜌𝑘
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Input: 𝑘 ∈ ℕ, and 𝑎 ∈ 𝕂𝑘
Output: 𝑏 ∈ 𝕂𝑘+1 such that 𝑏2 + 𝑏 + 𝑎 = 0 (the other solution is 𝑏 + 1).

• If 𝑘 = 0, we return 𝜌1 if 𝑎 = 1 otherwise we return 0.
• If 𝑘 > 0, we decompose 𝑎 = 𝑎1 + 𝑎2𝜌𝑘.

– If 𝑇 𝑟(𝑎2) = 0, we solve recursively 𝑏2
2 + 𝑏2 + 𝑎2 = 0 and get two

solutions 𝑏2 and 𝑏′
2 = 𝑏2 + 1. We define 𝑐 = 𝜇𝑘(𝑎2 + 𝑏2) + 𝑎1 and

𝑐′ = 𝜇𝑘(𝑎2 + 𝑏′
2) + 𝑎1 = 𝑐 + 𝜇𝑘. if 𝑇 𝑟(𝑐) = 0, we solve 𝑏2

1 + 𝑏1 + 𝑐 = 0
and return 𝑏1 + 𝑏2𝜌𝑘 otherwise, we solve 𝑏2

1 + 𝑏1 + 𝑐′ = 0 and return
𝑏1 + 𝑏′

2𝜌𝑘.
– If 𝑇 𝑟(𝑎2) = 1, we solve 𝑏2

1 + 𝑏2 + 𝑎 + 𝜇𝑘 = 0 and return 𝑏1 + 𝜌𝑘.

Figure 6. Algorithm solving 𝑥2 + 𝑥 + 𝑎

Hence, solving 𝑋2 + 𝑋 + (𝑏1 + 𝑏2𝜌𝑘) = 0 is equivalent to the system

{ 𝑎2
1 + 𝑎2

2𝜇𝑘−1 + 𝑎1 = 𝑏1
𝑎2

2 + 𝑎2 = 𝑏2

Let us assume that 𝑏1, 𝑏2 ∈ 𝕂𝑘−1 hence 𝑏1 + 𝑏2𝜌𝑘 ∈ 𝕂𝑘.
If 𝑇 𝑟(𝑏2) = 0, we search 𝑎1, 𝑎2 ∈ 𝕂𝑘−1 and we find 𝑎2 by a recursive call solving

𝑎2
2+𝑎2 = 𝑏2. This leads to the equation 𝑎2

1+𝑎1 = 𝑎2
2𝜇𝑘−1+𝑏1 or 𝑎2

1+𝑎1 = (𝑎2+1)2𝜇𝑘−1+𝑏1.
We can chose to solve the equation such that the trace of the second member is 0. We
need to use 𝑇 𝑟(𝜇𝑘−1) = 1 to ensure that one of the two traces is 0.

If 𝑇 𝑟(𝑏2) = 1, we take 𝑎2 = 1 (which gives 𝑎2
2 + 𝑎2 = 0) and 𝑎1 ∈ 𝕂𝑘 and we solve

𝑎2
1 + 𝑎1 = 𝑏1 + 𝑏2𝜌𝑘 + 𝜇𝑘−1. We do have 𝑇 𝑟(𝑏1 + 𝑏2𝜌𝑘 + 𝜇𝑘−1) = 𝑇 𝑟(𝑏2) + 𝑇 𝑟(𝜇𝑘−1) = 0

ensuring the existence of two solutions. This gives the algorithm of figure 6.

4. Other properties

Definition 8. For 𝑘 > 0, we define 𝜙𝑘 ∶ 𝕂𝑘 → 𝕂𝑘−1 as the square root of the norm (the
determinant of the multiplication matrix, as seen in subsection 3.4):

𝜙𝑘(𝑎 + 𝑏𝜌𝑘) = √𝑎(𝑎 + 𝑏) + 𝑏2𝜇𝑘−1

Fact 9. 𝜙𝑘 is a group morphism from (𝕂∗
𝑘, ×) to (𝕂⋆

𝑘−1, ×) which is the identity when
restricted on 𝕂𝑘−1.

Proof. Immediate from the property of the determinant and square root. □
Fact 10. We have 𝜙𝑘(𝜇𝑘) = 𝜙𝑘(𝜇−1

𝑘 ) = 1
Proof. From 3 we have 𝜇−1

𝑘 = 1 + 𝜇−1
𝑘−1𝜌𝑘. Hence 𝜙𝑘(𝜇−1

𝑘 ) = 1 + 𝜇−1
𝑘−1 + 𝜇−2

𝑘−1𝜇𝑘−1 = 1.
From this we get 𝜙𝑘(𝜇𝑘) = 1 because 𝜙𝑘 is a group morphism. □
Lemma 11. Let 𝑘 ∈ ℕ, 𝛼 ∈ 𝕂𝑘 with 𝑇 𝑟(𝛼) = 1 and define 𝑓𝛼(𝑥) = 𝛼(1 + 𝑥)−1 and
𝑔𝛼 ∶ {0, 1, 2, 3, ..., 22𝑘 − 1} → 𝕂𝑘 by 𝑔𝛼(𝑚) = 𝑓𝑚

𝛼 (0). We show that 𝑔𝛼 is a well defined
bijection and 𝑔𝛼(22𝑘 − 1) = 1.
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We also have the extra property that 𝑔𝛼(22𝑘−1−𝑚) = 1+𝑔𝛼(𝑚) for 𝑚 ∈ {0, 1, 2, 3, ..., 22𝑘−
1}.
Proof. Clearly, 𝑓𝛼(𝑥) is defined for 𝑥 ≠ 1. For 𝑥 ≠ 0, 𝑓−1

𝛼 (𝑥) = 1+𝛼𝑥−1. This means that
the orbits of 𝑓𝛼 are a sequence starting at 0 and ending at 1 plus some closed cycles. We
just need to show that there are no cycle.

We define the sequence 𝑎(𝑛∈ℕ) by 𝑎0 = 1, 𝑎1 = 0 and for 𝑛 > 1, 𝑎𝑛 = 𝑎𝑛−1 + 𝛼𝑎𝑛−2 and
we show by induction that for 𝑛 ≥ 0,

𝑓𝑛
𝛼(𝑥) = 𝛼 𝑎𝑛𝑥 + 𝑎𝑛+1

𝑎𝑛+1𝑥 + 𝑎𝑛+2
• For 𝑛 = 0, we have

𝑓0
𝛼(𝑥) = 𝑥 = 𝛼 𝑥 + 0

0𝑥 + 𝛼 = 𝛼𝑎0𝑥 + 𝑎1
𝑎1𝑥 + 𝑎2

• For 𝑛 > 0, we have
𝑓𝑛+1

𝛼 (𝑥) = 𝑓𝑛
𝛼(𝑓𝛼(𝑥))

= 𝛼 𝑎𝑛𝛼(1 + 𝑥)−1 + 𝑎𝑛+1
𝑎𝑛+1𝛼(1 + 𝑥)−1 + 𝑎𝑛+2

by induction hyp.

= 𝛼 𝑎𝑛𝛼 + 𝑎𝑛+1(1 + 𝑥)
𝑎𝑛+1𝛼 + 𝑎𝑛+2(1 + 𝑥)

= 𝛼 𝑎𝑛+1𝑥 + 𝑎𝑛+1 + 𝑎𝑛𝛼
𝑎𝑛+2𝑥 + 𝑎𝑛+2 + 𝑎𝑛+1𝛼

= 𝛼𝑎𝑛+1𝑥 + 𝑎𝑛+2
𝑎𝑛+2𝑥 + 𝑎𝑛+3

Thus, for 𝑛 > 0, we have
𝑓𝑛

𝛼(𝑥) = 𝑥
⇔ 𝛼 𝑎𝑛𝑥 + 𝑎𝑛+1

𝑎𝑛+1𝑥 + 𝑎𝑛+2
= 𝑥

⇔ 𝛼𝑎𝑛𝑥 + 𝛼𝑎𝑛+1 = 𝑎𝑛+1𝑥2 + 𝑎𝑛+2𝑥
⇔ 𝑎𝑛+1𝑥2 + (𝑎𝑛+2 + 𝛼𝑎𝑛)𝑥 + 𝛼𝑎𝑛+1 = 0
⇔ 𝑎𝑛+1𝑥2 + 𝑎𝑛+1𝑥 + 𝛼𝑎𝑛+1 = 0
⇔ 𝑥2 + 𝑥 + 𝛼 = 0 because 𝑎𝑛+1 ≠ 0 if 𝑛 > 0

This equation does not have any solution in 𝕂𝑘 as we assumed 𝑇 𝑟(𝛼) = 1. This proves
that there are no cycle.

For the extra property, it is true for 𝑚 = 0. Assuming it hold for 𝑚, we have:
𝑔𝛼(𝑚 + 1) = 𝑓𝛼(𝑔𝛼(𝑚))

= 𝛼(1 + 𝑔𝛼(𝑚))−1

= 𝛼𝑔𝛼(22𝑘 − 1 − 𝑚)−1by induction hyp.
= 1 + 𝑓−1

𝛼 (𝑔𝛼(22𝑘 − 1 − 𝑚))
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= 𝑔𝛼(22𝑘 − 1 − 𝑚 − 1) (4.1)
□

Lemma 12. We define 𝕆𝑘 = {𝛽 ∈ 𝕂𝑘, 𝜙𝑘(𝛽) = 1} and define 𝜎𝑘 ∶ 𝕂𝑘 → 𝕂𝑘−1 ∪ {∞}
by 𝜎𝑘(𝑎1 + 𝑎2𝜌𝑘) = 𝑎1𝑎−1

2 if 𝑎2 ≠ 0 and 𝜎𝑘(𝑎1) = ∞ if 𝑎1 ∈ 𝕂𝑘−1. Remark that
𝕆𝑘 ∩ 𝕂𝑘−1 = {1}.

For 𝑎, 𝑏 ∈ 𝕂𝑘 ∖ 𝕂𝑘−1, we have

𝜎𝑘(𝑎𝑏) = 𝜎𝑘(𝑎)𝜎𝑘(𝑏) + 𝜇𝑘−1
1 + 𝜎𝑘(𝑎) + 𝜎𝑘(𝑏)

We define a binary operation ⋄ on 𝕂𝑘−1 ∪ {∞} by:
• ∞ is neutral
• 𝑥 ⋄ 𝑦 = 𝑥𝑦+𝜇𝑘−1

𝑥+𝑦+1 if 𝑥, 𝑦 ∈ 𝕂𝑘−1 and 𝑥 + 𝑦 + 1 ≠ 0
• 𝑥 ⋄ 𝑦 = ∞ if 𝑥 + 𝑦 + 1 = 0

The above equation establishes that 𝜎𝑘 is a abelian group morphism between (𝕂∗
𝑘, ×) and

(𝕂𝑘−1 ∪ {∞}, ⋄).
Moreover, 𝜎𝑘 is an isomorphism when restricted to 𝕆𝑘.

Proof. Let 𝑎 = 𝑎1 + 𝑎2𝜌𝑘 ∈ 𝕂𝑘 ∖ 𝕂𝑘−1, 𝑏 = 𝑏1 + 𝑏2𝜌𝑘 ∈ 𝕂𝑘 ∖ 𝕂𝑘−1. First we assume that
𝑎𝑏 ≠ 1 and compute:

𝑎𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2𝜇𝑘−1 + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2)𝜌𝑘

𝜎𝑘(𝑎𝑏) = 𝑎1𝑏1 + 𝑎2𝑏2𝜇𝑘−1
𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2

= 𝜎𝑘(𝑎)𝜎𝑘(𝑏) + 𝜇𝑘−1
𝜎𝑘(𝑎) + 𝜎𝑘(𝑏) + 1

If 𝑎𝑏 = 1, the we have 𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2 = 0 hence dividing by 𝑎2𝑏2, we find 𝜎𝑘(𝑎) +
𝜎𝑘(𝑏) + 1 = 0 and we do have 𝜎𝑘(𝑎𝑏) = ∞ = 𝜎𝑘(𝑎) ⋄ 𝜎𝑘(𝑏).

This is enough to establish that 𝜎𝑘 is a abelian group morphism between (𝕂∗
𝑘, ×) and

(𝕂𝑘−1 ∪ {∞}, ⋄).
We now show that it is an isomorphism when restricted to 𝕆𝑘. Let 𝑥 ∈ 𝕂𝑘−1 ∪ {∞}, for

𝑎 = 𝑎1 + 𝑎2𝜌𝑘 ∈ 𝕂𝑘, if 𝑥 ≠ ∞, we have
𝑎 ∈ 𝕆𝑘 ∧ 𝜎𝑘(𝑎) = 𝑥 ⇔ 𝑎1(𝑎1 + 𝑎2) + 𝑎2

2𝜇𝑘−1 = 1 ∧ 𝑎1𝑎−1
2 = 𝑥

⇔ 𝑥(𝑥 + 1) + 𝜇𝑘−1 = 𝑎−2
2 ∧ 𝑎1 = 𝑥𝑎2

⇔ 𝑎−1
2 = √𝑥(𝑥 + 1) + 𝜇𝑘−1 ∧ 𝑎1 = 𝑥𝑎2

If 𝑥 = ∞, we have 𝑎 ∈ 𝕆𝑘 ∧ 𝜎𝑘(𝑎) = ∞ implies 𝑎2 = 0 and 𝑎1 = 1. This establishes
that 𝜎𝑘 is a bijection by showing how to compute the unique antecedent of 𝑥 ∈ 𝕆𝑘. □

Corollary 13. We define 𝛼𝑘 = √𝜇−1
𝑘 . For 𝑥 ∈ 𝕂𝑘−1 ∖ {1}, we have 𝜎𝑘(𝛼𝑘) ⋄ 𝑥 =

𝜇𝑘−1(1 + 𝑥)−1 = 𝑓𝜇𝑘−1
(𝑥), 𝜎𝑘(𝛼𝑘) ⋄ 1 = ∞ and 𝜎𝑘(𝛼𝑘) ⋄ ∞ = 𝜎𝑘(𝛼𝑘) = 0.
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Proof. From lemma 3, if 𝑘 > 0, we have 𝜌2
𝑘 = 𝜇−1

𝑘 𝜇𝑘−1 hence 𝜇−1
𝑘 = 𝜌2

𝑘𝜇−1
𝑘−1 and therefore

𝛼𝑘 = 𝜌𝑘𝛼𝑘−1. We also have 𝛼0 = 1 from 𝜇0 = 1. Hence 𝜎𝑘(𝛼𝑘) = 0 and from the definition
of ⋄, we get 𝜎𝑘(𝛼𝑘) ⋄ 𝑥 = 𝜇𝑘−1(1 + 𝑥)−1 = 𝑓𝜇𝑘−1

(𝑥) if 𝑥 ≠ 1 and 𝜎𝑘(𝛼𝑘) ⋄ 1 = ∞. □

Lemma 14. 𝜇𝑘 is of order 22𝑘−1 + 1.
Proof. Corollary 13 and lemma 11 establishes that the operation 𝑥 ↦ 𝜎𝑘(𝛼𝑘) ⋄ 𝑥 has a
unique cyclic orbit of length 22𝑘−1 + 1 in 𝕂𝑘−1 ∪ {∞}. As 𝜎𝑘 is a group morphism (lemma
12), this establishes that 𝛼𝑘 is of order 22𝑘−1 + 1. As we are in characteristic 2 and every
element has a unique square root, this shows that 𝜇𝑘 = 𝛼−1

𝑘 is of the same order. □
Corollary 15. From the previous lemmas, we deduce that

𝕂∗
𝑘 ≃ 𝕂∗

𝑘−1 × (𝕂𝑘−1 ∪ ∞) ≃ 𝕂∗
𝑘−1 × ℤ/(22𝑘−1 + 1)ℤ.

The first isomorphism is given by 𝑥 ↦ (𝜙𝑘(𝑥), 𝜎𝑘(𝑥𝜙−1
𝑘 (𝑥))) and the second by 𝑥 ↦

(𝜙𝑘(𝑥), log𝜇𝑘
(𝑥𝜙−1

𝑘 (𝑥))).

Proof. The isomorphism 𝕂∗
𝑘 ≃ 𝕂∗

𝑘−1 × (𝕂𝑘−1 ∪ ∞) is given by 𝑥 ↦ (𝜙𝑘(𝑥), 𝜎𝑘(𝑥𝜙−1
𝑘 (𝑥))).

Indeed, 𝑥 ↦ (𝜙𝑘(𝑥), 𝑥𝜙−1
𝑘 (𝑥)) is an isomorphism 𝕂∗

𝑘 ≃ 𝕂∗
𝑘−1 × 𝕆𝑘 and we conclude use

lemma 12.
For the second isomorphism 𝕂∗

𝑘 ≃ 𝕂∗
𝑘−1 × ℤ/(22𝑘−1 + 1)ℤ, we remark that 𝜇𝑛

𝑘 ∈ 𝕆𝑘 by
fact 10 and the order of 𝜇𝑘 being the cardinal of 𝕆𝑘, we can conclude. The isomorphism
is therefore 𝑥 ↦ (𝜙𝑘(𝑥), log𝜇𝑘

(𝑥𝜙−1
𝑘 (𝑥))). □
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