ON A QUESTION OF SUPPORTS

FRÉDÉRIC MANGOLTE AND CHRISTOPHE RAFFALLI

Abstract

We give a sufficient condition in order that n closed connected subsets in the n dimensional real projective space admit a common multitangent hyperplane.

1. Introduction

The motivation for the present note is a step in the proof of the following statements [JPM04, Corollary 5.5 and Theorem 6.1] or [Man17, Man20, $\breve{g} 5.3$]:
Theorem 1. Let X be a real del Pezzo surface of degree 2 such that $X(\mathbb{R})$ is homeomorphic to the disjoint union of 4 spheres. Then a smooth map $f: X(\mathbb{R}) \rightarrow \mathbb{S}^{2}$ can be approximated by regular maps if and only if its topological degree is even.
Theorem 2. Let X be a real del Pezzo surface of degree 1 such that $X(\mathbb{R})$ is homeomorphic to the disjoint union of 4 spheres and a projective plane. Then every smooth map $f: X(\mathbb{R}) \rightarrow \mathbb{S}^{2}$ can be approximated by regular maps.

In the statements above $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ is the real locus of the quadric $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ and a regular map is only regular on real algebraic loci, see [Man17, Man20, Definitions 1.2.54 and 1.3.4] for details.

One key point in the proof of the former statements was the existence of a bitangent line to any pair of connected components of a plane quartic and the existence of a tritangent conic to any triple of connected components of certain space sextic. To be precise we need the following:
Proposition 3. Let $n=2,3$ and $X \subset \mathbb{P}^{n}$ be a smooth real algebraic curve of degree $2 n$ whose real locus $X(\mathbb{R})$ has at least $n+1$ connected components. If $n=3$, assume furthermore that X lies on a singular quadric.

Choose n connected components $\Omega_{1}, \ldots, \Omega_{n}$ of $X(\mathbb{R})$. Then there exists a hyperplane of $\mathbb{P}^{n}(\mathbb{R})$ which is tangent to Ω_{i} for all $1 \leqslant i \leqslant n$.

Given a pair of embedded circles in the plane, it seems rather clear that a line tangent to each of them exists provided that the circles are unnested. Anyway, finding a rigorous proof of this is not straightforward and we did not find proper reference in the literature. It's less obvious to find a tritangent conic to three embedded circles in a cone. More generally, we can wonder how to generalize the obvious necessary condition to be unnested in a more general setting and, even better we can seek for a necessary and sufficient condition. We find a sufficient (but still not necessary) condition in a rather general setting. This is the main result of this short note (Theorem 10) from which we derive easily Proposition 3 as a particular case. Sections 2 and 3

2020 Mathematics Subject Classification. 14H50 14P05 14P25 52A10 52A15 52A20.
Key words and phrases. real algebraic curve; bitangent; tritangent; support hyperplane; convex set.
Translated by Egor Yasinsky and Susanna Zimmermann from a preprint originally written in French.
are devoted to the proof of this theorem. In Section 3, we prove Proposition 3 and propose a conjecture with a sufficient condition weaker than Theorem 10. We refer to the cited references for the proofs of Theorems 1 and 2.

2. Some reminders

We start with some well-known definitions from convex geometry.
Definition 4 (Convex hull). Let E be an Euclidean space of dimension n. A subset $A \subset E$ is called convex in E if and only if for all $x, y \in A$ and every $t \in[0,1]$ we have

$$
t x+(1-t) y \in A
$$

i.e. the line segment joining x and y is contained in A. The convex hull of a subset $A \subset E$ is the smallest (in the inclusion sense) convex subset of E containing A.
Definition 5 (Extremal point). Let E be an Euclidean space of dimension n and $A \subset E$ be a subset. We say that a point $x \in A$ is an extremal point of A if the convex hull of $A \backslash\{x\}$ is still convex.

Theorem 6 (Krein-Milman). Every non-empty compact convex subset of a Euclidean space admits an extremal point.
Proof. See for instance [Bou53, Chap. II. 4 Th. 1].
Corollary 7. Every non-empty compact subset of a euclidean space admits an extremal point.
Proof. Let A be a non-empty compact subset of a Euclidean space. Let A_{c} be the convex hull of A. By Krein-Milman, there exists an extremal point $x \in A_{c}$. If $x \notin A$, then the convex set $A_{c} \backslash\{x\}$ contains A and it is a strict subset of A_{c}, which contradicts A_{c} being the convex hull of A. Therefore, $x \in A$.

3. n-SUPPORTING HYPERPLANES

Definition 8 (Supporting hyperplane). Let H be a hyperplane of a Euclidean space E given by the equation $l(x)=a$, where l is a linear form and $a \in \mathbb{R}$. We denote by H^{+}and H^{-}the half-spaces

$$
H^{+}:=\{x \in E \mid l(x) \geq a\} \quad H^{-}:=\{x \in E \mid l(x) \leq a\} .
$$

Let $A \subset E$ be a subset of E and $x \in A$. We say that H is a supporting hyperplane of A in x (or that H leans on A in x) if and only if the following hold:
(1) $x \in A \cap H$
(2) $A \subset H^{+}$or $A \subset H^{-}$.

If A is a subset of $\mathbb{P}^{n}(\mathbb{R})$ and $x \in A$, we say that H leans on A in x if and only if there exists an affine chart E of $\mathbb{P}^{n}(\mathbb{R})$ such that $x \in E$ and H leans on A in x inside E.
Definition 9 (r-supporting hyperplane). Let A_{1}, \ldots, A_{r} be subsets of $\mathbb{P}^{n}(\mathbb{R})$. We say that H is a hyperplane of r-support of A_{1}, \ldots, A_{r} if there exist points $x_{1} \in A_{1}, x_{2} \in A_{2}, \ldots, x_{r} \in A_{r}$ such that H is a supporting hyperplane of A_{i} in x_{i} for all $1 \leq i \leq r$.
Theorem 10. Let $n \in \mathbb{N}$ and let $A_{1}, \ldots, A_{n} \subset \mathbb{P}^{n}(\mathbb{R})$ be closed connected subsets of $\mathbb{P}^{n}(\mathbb{R})$. Suppose that there exists a point $p \in \mathbb{P}^{n}(\mathbb{R})$ such that no hyperplane passing through p meets all the A_{i}. Then there exists an n-supporting hyperplane of A_{1}, \ldots, A_{n}.

Proof. We write $\mathbb{P}=\mathbb{P}^{n}(\mathbb{R})$ and $\mathbb{P}^{*}=\left(\mathbb{P}^{n}(\mathbb{R})\right)^{*}$ for the dual projective space. To each hyperplane $H \subset \mathbb{P}$ given by an equation $\sum \lambda_{k} x_{k}=0$, we associate the point $H^{*}:=\left(\lambda_{0}: \lambda_{1}: \cdots: \lambda_{n}\right)$ in \mathbb{P}^{*}. To each point $q \in \mathbb{P}$ we associate the dual hyperplane $q^{*}:=\left\{H^{*} \mid q \in H\right\}$ in \mathbb{P}^{*}.

The hypothesis that there exists a point $p \in \mathbb{P}$ such that no hyperplane passing through p meets all the A_{i} implies that the A_{i} are pairwise disjoint. Let \mathcal{H} be the set of hyperplanes in \mathbb{P} that meet all the A_{i}. Since there is a hyperplane through n points in \mathbb{P}, we see that \mathcal{H} is non-empty. Let \mathcal{H}^{*} be the image of \mathcal{H} in the dual space \mathbb{P}^{*} via the above correspondance. Since p^{*} corresponds to the set of hyperplanes in \mathbb{P} passing through p, the set \mathcal{H}^{*} is contained in the complement of the hyperplane p^{*} in \mathbb{P}^{*}. Let U_{p} be the open affine complement of p^{*} in \mathbb{P}^{*}.

Lemma 11. The set \mathcal{H}^{*} is compact in U_{p}.
Proof. For each $1 \leq i \leq n$, let \mathcal{H}_{i} be the set of hyperplanes that meet A_{i}. We have $\mathcal{H}^{*}=$ $\cap_{i=1}^{n}\left(\mathcal{H}_{i}\right)^{*}$. The set A_{i} being closed implies that $\left(\mathcal{H}_{i}\right)^{*}$ is closed. We start by showing that the complement of \mathcal{H}^{*} in U_{p} is open.

Indeed, the natural map $\mathbb{R}^{n+1} \rightarrow \mathbb{P},\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ induces a continuous double cover $\mathbb{S}^{n} \rightarrow \mathbb{P}$. The inverse image B_{i} of A_{i} through this map is a closed subset in the unit sphere of \mathbb{R}^{n+1}. If H is an hyperplane in \mathbb{P} that does not meet A_{i}, then its preimage H^{\prime} is an hyperplane in \mathbb{R}^{n+1} which does not meet B_{i}. The intersection $H^{\prime} \cap \mathbb{S}^{n}$ is the unit sphere of dimension $n-1$ in H^{\prime} and in particular is closed in \mathbb{S}^{n}.

If $d>0$ is the distance between the two compacts B_{i} and H^{\prime}, we can take U_{i} the subset of \mathbb{P}^{*} formed by the duals of hyperplanes whose traces on \mathbb{S}^{n} are at distance less than $\frac{1}{2}$ of B_{i}. Then $U_{i} \backslash\{p\}$ is open in U_{p}.

This shows that the complement of $\left(\mathcal{H}_{i}\right)^{*}$ in \mathbb{P}^{*} is open. It follows that \mathcal{H}^{*} is closed in \mathbb{P}^{*}. Moreover, the set \mathcal{H}^{*} is bounded in U_{p} because it is closed and $\mathcal{H}^{*} \cap p^{*}=\varnothing$. Hence \mathcal{H}^{*} is compact in U_{p}.

By Corollary 7 of Krein-Milman and Lemma 11, the set \mathcal{H}^{*} admits an extremal point H^{*}. Let us show that H is an n-supporting hyperplane of A_{1}, \ldots, A_{n}.

We proceed by contradiction and without loss of generality, we can suppose that H does not support A_{1}. Since $H \in \mathcal{H}$, there exists for each $i=2, \ldots, n$ a point $y_{i} \in A_{i} \cap H$. Let P_{1} be a hyperplane passing through p and y_{2}, \ldots, y_{n} and recall that P_{1} does not meet A_{1} by hypothesis. Since H does not lean on A_{1}, it does not lean on A_{1} in the affine chart $E=\mathbb{P} \backslash P_{1}$. We place ourselves inside E. The hyperplane $H \cap E$ defines two half-spaces H^{+}and H^{-}in E and there exists $x_{1} \in A_{1} \cap H^{+} \backslash H$ and $x_{2} \in A_{1} \cap H^{-} \backslash H$.

Let S be the closed segment $\left[x_{1}, x_{2}\right]$ in E. It intersects H. Let us show that

$$
\begin{equation*}
\text { any hyperplane in } E \text { that meets } S \text { also meets } A_{1} \text {. } \tag{1}
\end{equation*}
$$

Let P be a hyperplane of E meeting S. If it meets S in x_{1} or x_{2}, we are finished. Suppose that $P \cap S \subset] x_{1}, x_{2}\left[\right.$ and $A_{1} \cap P=\varnothing$. Let $O^{+}=P^{+} \backslash P$ and $O^{-}=P^{-} \backslash P$. The sets O^{+}and O^{-} are open subsets of E and $A_{1} \subset O^{+} \cup O^{-}$. The subspace A_{1} being connected in E, we have $A_{1} \subset O^{+}$or $A_{1} \subset O^{-}$. This is impossible because $x_{1} \in O^{+}$and $x_{2} \in O^{-}$(or the other way around). this ends the proof of (1).

Let $y \in S$. Since y_{2}, \ldots, y_{n} are pairwise distinct and are not contained in E (remember that $y_{i} \in A_{i} \cap P_{1}$ for $i \in\{2, \ldots, n\}$ by definition of P_{1}) and $S \subset E$, there exists a hyperplane $H_{y} \subset \mathbb{P}$ through y, y_{2}, \ldots, y_{n}. The hyperplane H_{y} is contained in \mathcal{H} because it meets A_{1} by property (1).

The points y_{2}, \ldots, y_{n} define a line D in \mathbb{P}^{*} and we have $\left(H_{y}\right)^{*} \in D$. Therefore, the set of $\left(H_{y}\right)^{*}, y \in S$, is a closed segment S^{*}. It is contained in U_{p}, because $p \notin H_{y}$, and S^{*} is contained in \mathcal{H}^{*} as a consequence of (1). Let $y_{0}=S \cap H$, where H^{*} is the extremal point of \mathcal{H}^{*} from above. Then $H^{*}=\left(H_{y_{0}}\right)^{*}$ is a point in the interior of S^{*}. It is therefore contained in the convex hull of \mathcal{H}^{*} and cannot be an extremal point, because we lose convexity if we take it away. Hence the contradiction.

4. Conclusion

Proof of Proposition 3. First recall that any hyperplane meets any connected component of $X(\mathbb{R})$ in an even number of intersection points, counted with multiplicity, see e.g. [Man17, Man20, Lemma 2.7.8]. Let p be a point of $X(\mathbb{R}) \backslash \cup \Omega_{i}$. By definition of the degree, a hyperplane passing through p cannot meet n other components of $X(\mathbb{R})$ because X has degree $2 n$ in \mathbb{P}^{n}.

The conclusion follows from Theorem 10.
Theorem 10 is enough to prove Proposition 3, but it's easy to see that the existence of a point p such that no hyperplane passing through p meets all the A_{i} is not necessary. Take for example two intersecting circles in the plane.

We propose the following conjecture using a weaker sufficient condition (which can be applied to the former example):
Conjecture 12. Let $\left\{A_{i}\right\}_{1 \leq i \leq n}$ be closed connected subsets contained in an affine subset of $\mathbb{P}^{n}(\mathbb{R})$. Let C_{i} be the union of all $(n-2)$-dimensional linear subspaces $P \subset \mathbb{P}^{n}(\mathbb{R})$ such that for all $j \neq i, 1 \leq j \leq n, P$ meets the convex hull of A_{j}. Assume that for all $1 \leq i \leq n, A_{i}$ is not included in interior of C_{i}, then there exists an n-supporting hyperplane of A_{1}, \ldots, A_{n}.

Remark that this new sufficient condition is still unnecessary: consider three disjoint spheres A_{1}, A_{2} and A_{3} with the same radius and whose center are on the same line. If A_{1} is not the sphere in the middle it is in the interior of the union of all lines meeting A_{2} and A_{3}.

We can see that the sufficient condition of the conjecture is weaker than the one of Theorem 10 , by contraposition. If the condition of the conjecture is not satisfied, then there exists i such that A_{i} is included in the interior of the union of the ($n-2$)-dimensional linear subspaces meeting each convex hull of $A_{j}, j \neq i$. Then there exists a ($n-2$)-dimensional linear subspace P meeting all A_{i}. Let $p \in \mathbb{P}$, then the hyperplane generated by p and P meet all A_{i} which contradicts the condition of the theorem.

We could also ask about the number of multi-tangent planes.
Proposition 13. Under the conditions of Theorem 10, if each A_{i} contains a non empty open subset, then there is at least $n+1$ distinct a n-supporting hyperplanes of A_{1}, \ldots, A_{n}.

Proof. If each A_{i} contains a non empty open subset, so does \mathcal{H}^{*}. This implies that there is at least $n+1$ distinct extremal points for \mathcal{H}^{*}. Indeed, if \mathcal{H}^{*} as less than $n+1$ extremal points, it is the convex-hull of its extremal points and therefore it is an hyperplane of dimension at most $n-1$ hence does not contain any open set. Then, the proof of theorem 10 establishes that each extremal points for \mathcal{H}^{*} corresponds to a distinct n-supporting hyperplanes.

However, it seems that the conditions of this theorem implies that we have 2^{n} extremal points (in dimension 2: 4 bitangent lines, 8 in dimension 3, etc.) By going either below or above each A_{i}. This suggest that \mathcal{H}^{*} ressemble to a cube. Moreover, all the examples we studied lead us to propose the following conjecture.

Conjecture 14. The main condition of Theorem 10 is sufficient and necessary to have 2^{n} multi-tangent planes when the A_{i} are not thin (i.e. contain an open subset).

References

[Bou53] N. Bourbaki, Espaces vectoriels topologiques, Actualités Scientifiques et Industrielles, No. 1189, Herman \& Cie, Paris, 1953. MR 0054161
[JPM04] Nuria Joglar-Prieto and Frédéric Mangolte, Real algebraic morphisms and del Pezzo surfaces of degree 2, J. Algebraic Geom. 13 (2004), no. 2, 269-285. MR 2047699 (2004m:14121)
[Man17] Frédéric Mangolte, Variétés algébriques réelles, Cours Spécialisés [Specialized Courses], vol. 24, Société Mathématique de France, Paris, 2017, viii +484 pages. MR 3727103
[Man20] , Real algebraic varieties, Springer Monographs in Mathematics, Springer International Publishing, 2020, xviii +444 pages.

Frédéric Mangolte
Aix Marseille Univ, CNRS, I2M, Marseille, France
frederic.mangolte@univ-amu.fr
Christophe Raffalli
christophe@raffalli.eu

