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Abstract

We propose a novel sufficient condition establishing that a piecewise affine variety has the
same topology as a variety of the sphere Sn defined by positively homogeneous C1 functions.
This covers the case of C1 varieties in the projective space Pn. We prove that this condition
is sufficient in the case of codimension one and arbitrary dimension. We describe an imple-
mentation working for homogeneous polynomials in arbitrary dimension and codimension and
give experimental evidences that our condition might still be sufficient in codimension greater
than one.

1 Introduction

1.1 Contribution

Let a variety V be defined by a system of implicit equations: V = {x ∈ K, f1(x) = 0, . . . , fm(x) =
0} on some compact polyhedron K ⊂ Rn, with 1 ≤ m ≤ n. We assume that the functions
f1, . . . , fm : Rn → R are C1. Let S = (Si)i∈I be a decomposition of K into a family of simplices.
A piecewise affine variety may always be defined from V and S by defining for each 1 ≤ i ≤ k an
approximation f̃i of the function fi by

� f̃i(x) = fi(x) for any x vertex of Si for i ∈ I and

� f̃i is affine when restricted to any Si for i ∈ I.

From this, we define Ṽ = {x ∈ K, f̃1(x) = 0, . . . , f̃k(x) = 0}. The question is to find a sufficient
condition ensuring that V and Ṽ are isotopic.

Moreover, we search for a criteria that can be computably approximated with arbitrary preci-
sion in the case of multivariate polynomials, to allow for an implementation.

We propose two theorems in codimension one (m = 1) and two conjectures, one weaker than
the other, supported by some experimental evidence, in the general case. More precisely:

� In section 3, we give a theorem that answers the question when K is a compact polyhedron
in Rn, in codimension one (m = 1) and when f1 is of C1 class.

� In section 4, we show that the same condition is correct if K = Sn the unit sphere of Rn+1,
in codimension one and when f1 is of C1 class and positively homogeneous of degree d (i.e.
f(λx) = λdf(x) for all λ ∈ R+ and x ∈ Rn+1). This case could be considered as codimension
2, but the homogeneity allows to ignore completely the equation of the sphere.

� In section 5, we generalise the previous statement to arbitrary codimension and conjecture
that it still holds. This conjecture is supported by an implementation which was tested on
many examples and never gave wrong topology. We actually give two conjectures, because
we lack some results on convex set of full rank matrices. We give more details in subsection
1.5 and section 5.
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Figure 1: piecewise linear approximation of a quartic curve

Let give now the statement of our first theorem in section 3:

Theorem 2 page 8. Let K ⊂ Rn be a compact polyhedron. Let (Si)i∈I be a simplicial decompo-
sition of K. Let f : Rn → K be a C1 function in n variables. Let V = {x ∈ K, f(x) = 0} be the
zero locus of f restricted to K. Assume that V ∩ ∂K = ∅.

We define p̃ : K→ R the piecewise affine function such that for all i ∈ I, f̃ |Si
is affine and for

any v vertex of Si, we have f(v) = f̃ |Si
(v). We define the following:

� Ṽ = {x ∈ K, f̃(x) = 0} the zero locus of f̃ .

� K(f) = {x ∈ K, f(x)f̃(x) ≤ 0}.

� ∇̃f(x) = {∇f̃ |Si
(x), x ∈ Si} ⊂ Rn

� G(f, x) = {∇f(x)} ∪ ∇̃f(x) ⊂ Rn

If the condition (1) below holds, then V and Ṽ are isotopic:

∀x ∈ K(f), 0 /∈ H(G(f, x)) the convex hull of G(f, x) (1)

Let us give some ideas about this theorem: the isotopy is naturally defined by ft(x) = tf(x) +
(1 − t)f̃(x) for x ∈ K and t ∈ [0, 1]. The function x 7→ ft(x) is not differentiable, but it is
differentiable in any direction, and its gradient at x in direction D is always given by a scalar
product V.D where V is in the convex hull of exactly the gradients we are considering in the
set G(f, x). Thus our condition ensures that V 6= 0, which we find is very natural smoothness
condition. This condition only needs to hold in region where ft may be null, i.e. when f(x) and
f̃(x) have opposite sign, this justifies the definition of K(f).

The theorem of section 4 is almost the same, we ask for the function to be positively homegenous
and we decompose Rn+1 in simplicial cones, which is defined in section 2. Appart from this, the
statement is unchanged.

In section 5 we propose two conditions (conjecture 4 and 8) that could apply in arbitrary
codimension (i.e. with more than one polynomials). Unfortunately we are not able to prove those
conjectures.

The first one (conjecture 4), the most natural, generalises the condition (1)

∀x ∈ K(p), 0 /∈ H(G(p, x))
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into

∀x ∈ K(p),∀A ∈ H(G(p, x)), A is of maximal rank (2)

This is natural as with codimension greater than one, the gradients become matrices and
maximal rank expresses transversality, hence smoothness.

Remarks: we do not need extra hypotheses, like smoothness (or non complete intersection
with codimension greater than one). However, if the variety is not sm ooth, our criteria will never
be satisfied. We should also say that our condition is frame independant. Indeed, a change of
coordinates will multiply all the gradients by the same invertible matrix and the convex hull is
transformed accordingly.

1.2 A global criteria

A standard way to compute piecewise affine approximation of varieties defined by implicit equa-
tions are decomposition method that proceed by incrementally subdivising the ambient space in
simplices or hypercubes, until some criteria is met.

Our criteria is such a stopping condition, but it is global. To our knowledge, all existing criteria
(like in [16]) will ensure the isotopy of the orginal variety and its approximation when restricted
to each simplex or hypercube. This is not the case of our criteria.

Let us explain more precisely what we mean by global. From the definitions in our theorem or
conjecture, if follows that if X is the set of vertices of the simplicial decomposition, we have X×V
isotopic to X× Ṽ . This means that the isotopy can not traverse the vertices of the decomposition.
However it may traverse faces of simplices of dimension one or more, allowing to use less simplices.

Figure 2: Our criteria is global

This is illustrated by figure 2. This figure represents a piece of a C1 variety in blue and
its approximation in black. In the triangle which is fully displayed, the approximation has only
one component while the original variety, has two components. Still our criteria accepts this
decomposition. This can save quite a lot of triangles.

1.3 Testing the criteria

Implementing a test for the criteria is not possible in general. But, in the case of polynomials,
we can use Bernstein basis: for all x in a simplex S, ∇p(x) always lies in the convex hull of
the coefficients of the polynomial ∇p, in this basis, after a change of variable to send the unit
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Figure 3: a quartic surface and its piecewise affine approximation

simplex in S. This gives easily a sufficient condition to satisfy the test in each face of the simplicial
decomposition. This is detailed in section 6.

Moreover, we can approximate the real criteria with arbitrary precision by subdividing each
face to test. We only do this subdivision for the test. Refining the decomposition requires to
subdivise the neighbour simplices and we do not want to do that if we can avoid it.

We implemented a heuristic that searches for a simplicial decomposition satisfying our crite-
ria. This is relatively quick because it uses floating point arithmetic. But when an apparently
correct decomposition is found, we retest the criteria with exact rational arithmetic, ensuring the
correctness.

Moreover, the search for the decomposition produces certificates that the relevant convex hulls
do not contain 0. In codimension one, such a certificate is a vector which has a positive scalar
product with all the generators of each convex hull. This way the only computation we have to
do in exact arithmetic are change of coordinates, scalar products and comparison. We do not
perform nested computation in loops and this limits the growth of the size of numerators and
denominators. In our experiments, the computing time of the final exact test is faster than the
search for a simplicial decomposition.

1.4 Examples

Remark : Because polynomials have no well defined value in the projective space, we will work
within Rn+1 and its unit sphere Sn. This is equivalent and much easier. Still all the examples will
be depicted in the projective space as it avoids to draw every point of the variety twice.

The green line segments in figures 1 and 3 are the edges of a simplicial decomposition of P2(R)
and P3(R) respectively (in the latter case, it is unfortunately not easy to guess the simplices from
their edges). The figure 1 gives the piecewise affine approximation of a plane curve of degree
4. It uses a decomposition of the projective plane with 13 vertices and 24 triangles and requires
58ms to compute. The figure 3 shows an algebraic surface of the same degree together with its
approximation. The decomposition uses 32 vertices and 152 tetrahedron and requires 3.3s to
compute.

As those varieties are enclosed in a compact polyhedron, their approximations can be proved
isotopic to the original varieties by the previous theorem 2. They can also be proved correct by
the theorem 3 of section 4.
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1.5 Another conjecture

A key ingredient for both the proof and the implementation is the geometric form of Hahn-Banach
theorem: in codimension 1, if S is a finite set of vectors, from 0 /∈ H(S), we get a vector N such
that N.V > 0 for all V ∈ S. Unfortunately, we could not find nor prove a similar result for convex
sets of full rank matrices. This suggests the following very interesting conjecture:

Conjecture 5. Let 1 < m ≤ n be two natural numbers, let S ⊂ Matm,n(R) be a convex set of
matrices of rank m. There exists a matrix M ∈ Matm,n(R) such that M tA + AtM is symmetric
definite and positive for all A ∈ S.

This Hahn-Banch conjecture also allows for a notion of certificate allowing to search for a
decomposition using efficient floating point computations, and rechecking the final result using
exact rational arithmetic. We can check quickly that M tA + AtM is symmetric definite and
positive using Choleski decompostion for each matrices A in S (if S is finite). This does not
require to compute the spectrum of the matrix.

Unfortunately, we do npt know how to implement a test to decide if all matrices in a convex set
of matrices are fullrank (used in 2), that produces a certificate. A constructive proof of conjecture
5 would likely provide such a test.

To be able to propose an implementation working in codimension greater than one, we use
a simpler sufficient condition, using only scalar products, that implies (2). This means we have
stronger evidence for another conjecture 8 using this stronger condition than for conjecture 4 using
(2).

1.6 Search for a simplicial decomposition

Our implementation is described in section 6 and is available on github:

https://github.com/craff/hypersurfaces.

It implements a semi-algorithm building a simplicial decomposition satisfying our criteria. This
means we can solve non-degenerate systems of homogeneous real polynomial equations. Non-
degenerate means that the jacobian matrix of the system is full rank at point that are in the
solution. By solving we mean finding a piecewise affine approximation of the solution that is
isotopic to the real solution. It allows to compute topological invariants of the solution and in
particular the number of connected components and the Betti numbers of each component (see
for instance the appendix B.3 of [17] for definitions). It is a semi-algorithm, which means that
it may loop when the system of polynomials is degenerated. Our semi-algorithm terminates, in
principle, if we know that the system of polynomials is non-degenerated.

In codimension one, our implementation is exact and provides a proved result about the hy-
persurface that reposes only on the correction of the final test using the certificate. This test is a
rather short piece of code and would be easy to rewrite. For codimension greater than one, the
validity of the answer of our algorithm depends upon conjecture 8.

The search for an adequate simplicial decomposition is in an early stage. Still some examples
are already quite interesting. For instance, we are able to compute Betti numbers of random cubic
given by a random homogeneous polynomials up to dimension 6 in less than one hour. Moreover,
to our knowledge, there is no available exact implementation working in arbitrary dimension and
codimension.

1.7 Related work

1.7.1 Viro’s method

Our main result may be seen as some inverse of Viro’s method [22, 18], more precisely the combi-
natorial patchworking version for complete intersection [20]. Indeed, Viro’s method allows for the
construction of polynomials with a zero locus having the same topology than a given piecewise
linear variety. We do the opposite.
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An important difference is that we use arbitrary simplicial decomposition rather than the
Newton polytope of polynomials of a chosen degree, reflected in each orthant. Due the fact that
we do not use only polynomial and therefore Newton Polytope, we did not manage to use [11, 19]
to shorten the proof.

1.7.2 Decomposition methods using Descartes’ rule of sign

For univariate polynomials, there is a similar available criteria: Descartes’ rule of sign. It allows
to ensure that a polynomial as at most one root in a given interval. There are many attempts to
generalise this rule to the multivariate case. Most of these work [10, 14, 4] only consider the zero
dimensional case. They give an upper bound of the number of solutions. If this upper bound is
one, it would allow to isolate each solution. A counter-example to Roy and Itenberg conjecture
[10] given by Li and Wang [15], means that even for the zero dimensional case, there is no known
generalisation of Descartes’ rule of sign that works in all cases. In a recent work [8] Descates
rules of sign is generalised to arbitrary hypersurfaces, but only give a bound to the number of
components which is not enough to compute the topology of hypersufaces.

1.7.3 Other decomposition methods

Our approach is similar to many other algorithms that work by subdivising the ambient space in
hypercubes or simplices. See [1] for a book covering most algorithms in the domain. In dimension 3,
Marching cube algorithms usually ensure correct topology between the piecewise trilinear function
given by the value at the vertex of each hypercube and the produced piecewise affine variety [21, 9].
There are not many algorithms for hypersurfaces in arbitrary dimension, we may cite [6].

For works that provide exact algorithms using decomposition, in the case of polynomials for 2D
or 3D curves or 3D surfaces, we may cite [7, 2]. Some of these works, like [16] also use Bernstein
basis in the implementation. This latter also uses Descartes’ rule of sign of the partial derivative
of the polynomials.

As we mentioned it previously, we think a key property of our criteria to stop a decomposition
is its global nature. Moreover, we are not aware of any criteria that would work in arbitrary
dimension and codimension.

1.7.4 Algebraic methods

Other algorithms, which are exact to compute topological invariants of algebraic variety, are
roughly based on the decidability of the theory of real closed fields. Thus, they are more algebraic,
using cylindrical decompositions, Groebner basis, resultants, . . . . They have the main advantage
of being able to deal with arbitrary singularities, but are of a very different nature. Moreover,
very few of these algorithms have free implementations and we could not compare them with our
algorithm, for instance on the computation of Betti numbers of random cubic in dimension up to
6.

Some available implementations, that could fit in this algebraic category, are limited to curves
and surfaces like bertini_real [5] or to the zero dimensional case like msolve [3]. Those two are
probably the best ones available. It is worth noticing that, unlike most available implementation
for curve and surfaces, bertini_real does not limit the number of variables and allow to compute
a surface embedded in a space of high dimension. However, unlike msolve, bertini_real is only
using arbitrary precision floating point arithmetic and is not an exact algorithm.

Currently the above cited algorithms support some management of singularities and seem
faster than our algorithm. This is to be expected as it is natural that more general algorithms
are slower than specialised ones. Moreover, our search for a simplicial decomposition that satisfies
our criteria is in an early stage. We outline below some directions of research that could allow our
criteria to be used in an algorithm that could compete with the state of the art algorithms.

Remark: a lot of the algorithms found in the literature are not freely available or hard to
install. We only succeeded to install bertini_real and msolve!
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1.8 Further theoretical research

Apart from proving or disproving the afford mentioned conjectures, it would be nice to provide a
complexity analysis for our algorithm. This will require (as for some algorithms searching for roots
of univariate polynomials), a measure of regularity of the system of polynomials. This bound will
probably be very bad because it will assume the worst everywhere, but it would still be interesting.

We would like to extend our work to product of projective spaces, weighted projective spaces
or compact of Rn with a border condition allowing the variety to meet the border.

For singular varieties, it is likely that our criteria is still correct for singularities which are
affine subvariaties, provided that all singularities of dimension m are entirely covered by some
faces of the simplicial decomposition of dimension m. For instance, isolated points must be among
the vertices of the decomposition. Then, the only modification of our criteria is to ignore the
singular faces and it seems to work. We tested this on isolated singularities, and this seems to
work. Singularities which are not affine subvarieties seem must more challenging.

1.9 Further implementation research

The main problem with the current implementation is that we do not know yet what are the best
triangulations for our criteria, especially in the case of codimension greater than one. For instance,
if we impose the vertices of the decomposition, what is the best triangulation to try to meet the
criteria? Currently we use the convex hull of the vertices projected on the unit sphere. This is
similar to Delauney’s triangulation. This is frame independant, but there is no reason that such
triangulations are the best to meet our criteria for a given polynomial system. The same is true
for the choice of vertices. Currently, we favour critical points as it seems to give good results, but
this is not frame independant and does not always give enough points and we don’t really known
what other points to choose.

We should also note that our implementation is written in OCaml using functors to parame-
terise the implementation by the representation of numbers, because it allows for rapid prototyping.
A C implementation optimised for speed could gain a factor 2 or 3 and parallelisation could allows
to gain a factor 10 and should be possible using OCaml 5.

We think it is possible to reach computing time matching those of existing decomposition
algorithms for curves and surfaces.

Another way to improve the efficiency is to combine our criteria with variables elimination
techniques. An idea would be to perform easy eliminations, before using our algorithm. For
instance, one could eliminate a variable if it occurs only in one monomial of some polynomials.
The current implementation is not even doing elimination of linear equations! But this is planed.

1.10 Thanks

We thank Stéphane Simon for showing us his marching cube implementation, 25 years ago, starting
our interest in this research topic. We thanks Ilia Itenberg for several discussions, in particular
about Viro’s method. Finally, we heartily thanks Frédéric Mangolte for the lengthy discussions
on this research, his comments and great help.

2 Notation and convention

Here are a few notation we use:

� H(S) denotes the convex hull of a subset S of Rn.

� When f : Rn → R is differentiable in all direction, we denote ∇(f)(x)(v) the differential of
f at x in the direction v. In general, we only have ∇(f)(x)(λv) = λ∇(f)(x)(v) for λ > 0 as
v 7→ ∇(f)(x)(v) may be non linear.

� When f : Rn → Rm is differentiable ∇(f)(x) will denote the m× n Jacobian matrix.
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Simplicial decomposition In section 3, we consider simplicial decomposition of a compact
polyhedron K ⊂ Rn. By simplicial decomposition, we mean, as in [18], a family of simplices
(Si)i∈I such that:

� K = ∪i∈ISi

� ∀i, j ∈ I, i 6= j, Si ∩ Sj is a simplex of dimension at most n− 1 which is the common face of
Si and Sj .

� ∀i, j ∈ I, i 6= j, S̊i ∩ S̊j = ∅.

Decomposition in simplicial cones

Definition 1. A simplicial cone, is a set S, that is defined from a simplex S′ that do not contain
0 by

S = {λx, x ∈ S′, λ > 0}

In section 4 and after, we consider decomposition in simplicial cones of Rn+1. We mean a
family of simplicial cone (Si)i∈I such that:

� K = ∪i∈ISi

� ∀i, j ∈ I, i 6= j, Si ∩ Sj is a simplicial cone of dimension at most n which is the common face
of Si and Sj .

� ∀i, j ∈ I, i 6= j, S̊i ∩ S̊j = ∅.

Bernstein basis In section 6 we refer to Bernstein basis. In the case of homogeneous polyno-
mials of degree d, it is(

d!

α!
xα
)
α∈Nd,Σiαi=d

where xα = Πix
αi
i and α! = Πiαi!

The key property of Bernstein basis it that its value in the unit simplex lies in the convex hull
of the coefficients. It is an immediate consequence of De Casteljau algorithm to compute the value
of the polynomial as a barycenter. We also use this property with the gradient of a polynomial,
seen as a polynomial whose coefficients are vectors.

3 Hypersurfaces on a compact polyhedron

Here is a first theorem for an hypersurface which is enclosed in the interior of a compact polyhedron
of Rn. This hypothesis seems essential and unnatural, but will disappear when we consider the
entire projective space of dimension n.

Theorem 2. Let K ⊂ Rn be a compact polyhedron. Let (Si)i∈I be a simplicial decomposition of
K. Let f : Rn → R of class C1. Let V = {x ∈ K, f(x) = 0} be the zero locus of f restricted to K.
Assume that V ∩ ∂K = ∅ (3).

We define f̃ : K→ R the piecewise affine function such that for all i ∈ I, f̃ |Si
is affine and for

any v vertex of Si, we have f(v) = f̃ |Si
(v). We define the following:

� Ṽ = {x ∈ K, f̃(x) = 0} the zero locus of f̃ .

� K(f) = {x ∈ K, f(x)f̃(x) ≤ 0}.

� ∇̃f(x) = {∇f̃ |Si
(x), x ∈ Si} ⊂ Rn

� G(f, x) = {∇f(x)} ∪ ∇̃f(x) ⊂ Rn
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If the condition below holds, then V and Ṽ are isotopic:

∀x ∈ K(f), 0 /∈ H(G(f, x)) (4)

Proof. Assume the definitions and hypotheses of the theorem. For any x ∈ Rn and ε > 0, we
define

G(f, x, ε) =
⋃

y∈K(f),‖y−x‖<ε

G(f, y)

Remark: we need to define G(f, x, ε) for x ∈ Rn because the convolution product below will
cover the border of K(f). Clearly, for points too far from K(f), we have G(f, x, ε) = 0.

We now prove that there exists ε > 0 such that

∀x ∈ K(f), 0 /∈ H(G(f, x, ε)) (5)

We proceed by contradiction and choose a sequence (xn)n∈N in K(f) such that 0 ∈ H(G(f, xn,
1
n )).

As K(f) is compact, we can assume that xn converges to x∞ ∈ K(f). Let us define

δ = min
i∈I,x∞ 6∈Si

dist(x∞, Si)

We have for any y ∈ K, ‖y−x∞‖ < δ and y ∈ Si implies x∞ ∈ Si and therefore ∇̃f(y) ⊂ ∇̃f(x∞).
Thus, for δn > 1, we have

0 ∈ H({∇f(y), y ∈ K, ‖xn − y‖ <
1

n
} ∪ ∇̃f(x∞))

The set {∇f(y), y ∈ K, ‖xn− y‖ < 1
n} converges to the singleton {∇f(x∞)} for the Haussdorf

metric and H is continuous for that metric. Hence,

H({∇f(y), y ∈ K, ‖xn − y‖ <
1

n
} ∪ ∇̃f(x∞)) −→ H(G(f, x∞)) when n −→ +∞

This implies 0 ∈ G(f, x∞), because it is a closed set, which contradicts (4).
By the geometric form of Hahn-Banach, we can find N : Rn → Rn such that

∀x ∈ Rn,∀v ∈ G(f, x, ε), N(x).v > 0

Let us choose a function µ : Rn → R+ of C∞ class, with support in the sphere of radius ε and
such that

∫
Rn µ(u)du = 1. We define:

N ′(x) = N ? µ =

∫
Rn

N(u− x)µ(u)du

N ′ is of C∞ class on Rn. Let us consider v ∈ G(f, x) for x ∈ K, if ‖u‖ < ε and therefore
‖x− (u− x)‖ < ε, we have v ∈ G(f, u− x, ε) which implies N(u− x).v > 0. This establishes:

∀x ∈ K(f),∀v ∈ G(f, x), N ′(x).v > 0 (6)

The next step is to consider the maximal integral curves of N ′. By The Cauchy-Lindelöf-
Lipshitz-Picard theorem those curves exist, are unique in K(f) and continuous in the initial con-
ditions.

For t ∈ [0, 1] we define ft : K → R, such that ft(x) = tf(x) + (1 − t)f̃(x). We remark that f̃
is differentiable in every direction and that the differential of f̃ at x in the direction D is given by
D.V for some V ∈ ∇̃f(x). Remark the differential in the direction D and −D may be different.

Therefore, the differential of ft at x ∈ K(f) in the direction N ′(x) is given by the expression
N ′(x).(t∇f(x) + (1− t)V ) for some V ∈ ∇̃f(x) and is therefore positive by (6).
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This means that the functions ft(x) are increasing along an integral curve of N ′ and therefore
each integral curve meet the variety Vt = {x ∈ R, ft(x) = 0} for t ∈ [0, 1] in at most one point.
Remark that Vt ⊂ K(f).

To finish the proof we must show that the maximal integral curves of N ′ have their extremity
in the border of K(f), which are points x with either f(x) = 0 or f̃(x) = 0, by the condition
(2). This is true because we can find K > 0 such that ∀x ∈ K(f),K < N ′(x) by compacity and
regularity of N ′. This means that a maximal integral curve of N ′ will join the border of K(f) on
an interval [t1, t2] for t2 − t1 < M

K where M is an upper bound of both f and f̃ on K.
Therefore, (x, t) 7→ ft(x) is the wanted isotopy.

4 Hypersurfaces on the projective space

We now give a condition to establish that an hypersurface in Sn the unit sphere of Rn+1 defined
by a positively homogeneous C1 function in n + 1 variables is istopic to a variety defined by a
piecewise linear function on Rn+1. We state the theorem on the unit sphere Sn because it is
simpler to write the condition than working on the projective space.

Theorem 3. Let (Si)i∈I be a decomposition of Rn+1 in simplicial cones with vertices on Sn, the
unit sphere of Rn+1. Let p : Rn+1 → R be a positively homogeneous C1 function of degree d. (i.e.
p(λx) = λdp(x) for any λ ∈ R+ and x ∈ Rn+1). Let V = {x ∈ Sn, p(x) = 0} be the zero locus of
p restricted to Sn.

We define p̃ : Rn+1 → R the piecewise linear function such that for all i ∈ I, p̃|Si
is linear and

for any v vertex of Si, we have p(v) = p̃|Si
(v). We define the following:

� Ṽ = {x ∈ Sn, p̃(x) = 0} the zero locus of p̃.

� K(p) = {x ∈ Sn, p(x)p̃(x) ≤ 0}.

� ∇̃p(x) = {∇p̃|Si
(x), x ∈ Si} ⊂ Rn+1

� G(p, x) = {∇p(x)} ∪ ∇̃p(x) ⊂ Rn+1

If the following condition (7) holds, then V and Ṽ are isotopic:

∀x ∈ K(p), 0 /∈ H(G(p, x)) (7)

This implies that the projective varieties associated to V and Ṽ are isotopic if the simplicial
decomposition is stable by the symmetry x 7→ −x.

Proof. By taking K = Sn, we can use exactly the same definitions and reasoning as the proof of
theorem 2 until the definition of N ′ of C∞ class satisfying

∀x ∈ K(p),∀v ∈ G(p, x), N ′(x).v > 0 (8)

We must change the definition of pt(x), using d the degree of p:

p(x) = p̃(x‖x‖d−1)
pt(x) = tp(x) + (1− t)p(x)

We have pt(λx) = λdpt(x) for all λ ∈ R+. As in the previous proof, p̃(x) has a differential
in any direction v. Hence, the functions p and pt are differentiable in any direction, hence they
satisfy Euler relation:

∇p(x)(x) = dp(x) ∇pt(x)(x) = dp(x)
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We need more precision for the derivative of p̃: if x, v ∈ Rn+1 we can define i(x, v) ∈ I such
that x ∈ Si(x,v) and x+ hv ∈ Si(x,v) for all h > 0 small enough. We also define S(x, v) = Si(x,v).
Using this notation, the gradient of p̃(x) in the direction v is given by

∇p̃(x)(x) = ∇p̃|S(x,v)
(x).v (9)

But as p̃|S(x,v)
is linear, its gradient is constant and we can simply write ∇p̃|S(x,v)

.v. Remark: i(x, v)

is not uniquely defined, but the choice of index in I does not change the value of the differential
in a given direction.

Using these notations, we compute:

∇p(x)(v) = d∇p̃|S(x,v)
.v‖x‖d−1

∇pt(x)(v) = (t∇p(x) + (1− t)d∇p̃|S(x,v)
‖x‖d−1).v

We now prove that for x ∈ K(p), N ′(x) is not normal to the unit sphere at x. Let us choose
x ∈ K(p), we can find t ∈ [0, 1] such that pt(x) = tp(x) + (1 − t)p(x) = 0 (take t = 0 if

p(x) = p̃(x) = 0 and t = p(x)
p(x)−p(x) otherwise). This is well defined because in K(p) we can only

have p(x) = p(x) if p(x) = p̃(x) = 0. Let us define

V = t∇p(x) + (1− t)d∇p̃|S(x,v)

The gradient pt(x) in the direction of x, is given by V.x = pt(x) = 0 by Euler relation. V ∈
(t+ (1− t)d)G(p, x) and t+ (1− t)d = d− t(d− 1) > 0 for t ∈ [0, 1]. This means that N ′(x) can
not be normal to Sn at x as this would imply V.N ′(x) = 0 which is impossible by (8). This ends
the proof that N ′(x) is not normal to the unit sphere at x.

We can now define for all x ∈ K(p), NT (x) = N ′(x)− (N ′(x).x)x, the projection of N ′(x) on
the hyperplane tangent to Sn at x. For x ∈ K(p), as the polyhedra Si are simplicial cones we
can assume S(x,N ′(x)) = S(x,NT (x)) that we will simply write S(x). Indeed, for h > 0 small
enough, x+hN ′(x) and x+hNT (x) belong to the same simplicial cone Si because they only differ
by a vector in the direction of x and Si is a cone.

Using this notation, for a point x ∈ K(p) such that pt(x) = 0, the gradient of pt(x) in direction
N ′(x) and NT (x) verify:

∇pt(x)(N ′(x)) = (t∇p(x) + (1− t)d∇p̃|S(x)
).N ′(x)

> 0 by (8)
∇pt(x)(NT (x)) = (t∇p(x) + (1− t)d∇p̃|S(x)

).NT (x)

= (t∇p(x) + (1− t)d∇p̃|S(x)
).(N ′(x)− (x.N ′(x))x)

= (t∇p(x) + (1− t)d∇p̃|S(x)
).N ′(x) by Euler relation

> 0 (10)

Let γ : J → K(p) be a maximal integral curve of NT . This means γ′(u) = NT (γ(u)). There
are particular cases where γ is reduced to one point x when p(x) = p̃(x) = 0.

In all other cases, as p̃ is derivable in all directions, u 7→ p̃(γ(u)) is derivable (but not necessarily

of C1 class). Similarly u 7→ p(γ(u)) and u 7→ pt(γ(u)) for t ∈ [0, 1] and t(u) = p(u)
p(u)−p(u) are

derivable. Moreover, a point x ∈ K(p) with p(x) = 0 or p̃(x) = 0 can only be at the extremity of
γ, otherwise, by (10), γ would leave K(p). This means that p and p̃ have constant sign on γ and
may be null only on the extremity. This implies that p(γ(u)) − p(γ(u)) is of contant signe along
such a curve γ.

We have:

pt(u)(γ(u)) = 0
(p(γ(u))− p(γ(u)))t′(u) +∇pt(u)(γ(u))(γ′(u)) = 0

11



(p(γ(u))− p(γ(u)))t′(u) = ∇pt(u)(γ(u))(NT (γ(u)))
(p(γ(u))− p(γ(u)))t′(u) > 0 (11)

This means that t(u) is monotonous along any curve γ that is not reduced to one point. As
in the previous proof, NT (γ(u)) is never null and is minored by some constant K > 0, thus the
extremity of maximal integral curve γ will necessarily be a point where p is null and another point
where p̃ is null.

This means that pt defines the isotopy we are looking for.

5 Increasing codimension

We propose the following conjecture for several positively homogeneous C1 funciton:

Conjecture 4. Let (Si)i∈I be a decomposition of Rn+1 in simplicial cones with vertices on Sn,
the unit sphere of Rn+1. Let p = (p1, . . . , pm) be a family of m ≤ n positively homogeneous C1

functionx from Rn+1 to Rn of respective degree (d1, . . . , dm) not necessarily equal (i.e. pi(λx) =
λdipi(x) for any λ ∈ R+ and x ∈ Rn+1). Let V = {x ∈ Sn, p(x) = 0} be the zero locus of p
restricted to Sn.

We define p̃ : Rn+1 → Rm the piecewise linear function such that for all i ∈ I, p̃|Si
is linear

and for any v vertex of Si, we have p(v) = p̃|Si
(v). We define the following:

� Ṽ = {x ∈ Sn, p̃(x) = 0} the zero locus of p̃.

� K(p) = {x ∈ Sn,∀i ∈ {1, . . . ,m}, pi(x)p̃i(x) ≤ 0}.

� ∇̃p(x) = {∇p̃|Si
(x), x ∈ Si} ⊂ Matm,n+1(R)

� G(p, x) = {∇p(x)} ∪ ∇̃p(x) ⊂ Matm,n+1(R)

If the condition below holds, then V and Ṽ are isotopic:

∀x ∈ K(p),∀A ∈ H(G(p, x)), A is of maximal rank (12)

This conjecture is the natural generalisation of theorem 3 and our implementation described
in the next section suggest that it might be true.

Unfortunately, to adapt the proof of the previous section, we need a result analogous to Hahn-
Banach for convex set of full rank matrices. This would give the countepart of the vector N(x) in
the previous proof and also the certificate we need for the implementation.

Here is the expected result that seems unknown and that we could not prove neither disprove:

Conjecture 5. Let 1 < m ≤ n two natural numbers, let S ⊂ Matm,n(R) a convex set of matrices
of rank m. There exists a matrix M ∈ Matm,n(R) such that M tA + AtM is symmetric definite
and positive for all A ∈ S.

We could not prove that conjecture 5 implies conjecture 4 but we feel that it is a key element
of the proof. A way to prove this implication would be to ensure that NT : K(p)→ Matm,n+1(R)
satisfies the Schwartz condition. This means we should have that the derivative of NT

i in the
direction NT

j should be equal to the derivative of NT
j in the direction NT

i . Then, we could

construct unique integral hypersurfaces of NT and probably finish the proof. To to this, an idea
if to build the kernel used in the convolution product defining N ′ by solving a partial differential
equation...

As we can not prove constructively conjecture 5, we have no algorithm to test condition 12
that would give a certificate. Therefore, for our implementation, we use a stronger condition using
this definition:

12



Definition 6. Let 1 < m ≤ n two natural numbers, let S ⊂ Matm,n(R) a set of matrices. S is
said to be strongly full rank if

∀σ ∈ {−1, 1}m, 0 /∈ H({σA,A ∈ S})

Proposition 7. If S ⊂ Matm,n(R) is strongly full rank, then H(S) contains only full rank matri-
ces.

Proof. If A ∈ H(S) is not full rank, then there exists v ∈ Rm such that vA = 0. Take σ =
(σ1, . . . , σn) such that σi = 1 if vi ≥ 0 and σi = −1 otherwise and we find 0 ∈ H({σA,A ∈ S}).

This stronger condition gives a weaker conjecture that correspond to our implementation:

Conjecture 8. Let (Si)i∈I be a decomposition of Rn+1 in simplicial cones with vertices on Sn,
the unit sphere of Rn+1. Let p = (p1, . . . , pm) be a family of m ≤ n positively homogeneous C1

functionx from Rn+1 to Rn of respective degree (d1, . . . , dm) not necessarily equal (i.e. pi(λx) =
λdipi(x) for any λ ∈ R+ and x ∈ Rn+1). Let V = {x ∈ Sn, p(x) = 0} be the zero locus of p
restricted to Sn.

We define p̃ : Rn+1 → Rm the piecewise linear function such that for all i ∈ I, p̃|Si
is linear

and for any v vertex of Si, we have p(v) = p̃|Si
(v). We define the following:

� Ṽ = {x ∈ Sn, p̃(x) = 0} the zero locus of p̃.

� K(p) = {x ∈ Sn,∀i ∈ {1, . . . ,m}, pi(x)p̃i(x) ≤ 0}.

� ∇̃p(x) = {∇p̃|Si
(x), x ∈ Si} ⊂ Matm,n+1(R)

� G(p, x) = {∇p(x)} ∪ ∇̃p(x) ⊂ Matm,n+1(R)

If ∀x ∈ K(p), G(p, x) is strongly full rank, then V and Ṽ are isotopic.

6 Implementation

Obtaining an implementation from theorem 3 or conjecture 8 is not very difficult.
Let (Si)i∈I be a decomposition of Rn+1 in simplicial cones with vertices on Sn, the unit sphere

of Rn+1. Let p = (p1, . . . , pm) be a family of m ≤ n homogeneous polynomials with n+1 variables.
Let us consider now a simplicial cone F which is a subset of a face of dimension dF of one of

the simplex Si for i ∈ I. F could be reduced to a vertex when dF = 0 or could be of dimension
dF = n + 1. By doing a change of coordinates sending the unit simplex of dimension dF to F
and writing the resulting polynomials in the Berstein bases, we can use the fact that the value
of polynomials or their differentials are in the convex hull of the coefficients to check that the
condition of our theorem 3 or conjecture 8 holds in F .

This leads to the following procedure:

Procedure 9 (TEST FACE).
Inputs:

� (Si)i∈I a decomposition of Rn+1 in simplicial cones with vertices on Sn.

� p = (p1, . . . , pm) a family of m ≤ n homogeneous polynomials with n+ 1 variables.

� p̃ = (p̃1, . . . , p̃m) the piecewise linear functions associated to p and (Si)i∈I .

� a simplex F of dimension dF which is included in a face of one of the Si.

� a minimal size for simplices.

� a heuristic to split a simplex in 2 (that may use all other inputs).
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Algorithm:

1. Build the matrix P sending the unit simplex of dimension dF to F

2. Write p(M(x)) and p̃(M(x)) in the Berstein basis, this gives two families of homogeneous
polynomials q(x) and q̃(x) with dF + 1 variables. Remark: if F is a vertex, it is equivalent
to evaluating the polynomials!

3. If there is 1 ≤ i ≤ m such that all coefficients of qi and q̃i have the same sign, return TRUE

because F does not meet K(p).

4. Otherwise, compute the list L such that {Sl, l ∈ L} is the set all simplicies that contains F .

5. Write ∇p(M(x)) and, for all l ∈ L, ∇p̃|Sl
(M(x)) in the Berstein bases. Define the set A of

m× (n+ 1) matrices which are the coefficients of those polynomials. If for all σ ∈ {−1, 1}m
we have 0 /∈ H({σM,M ∈ A}) return TRUE because A is strongly full rank.

6. Otherwise, if F is not too small, subdivide F in F1 and F2 and recursively call the procedure
TEST_FACE on F1 and F2 and return TRUE if both calls return TRUE.

7. Otherwise, if F was too small, return FALSE.

Using this procedure, we can implement our main loop:

Procedure 10 (MAIN LOOP).
Inputs:

� (Si)i∈I a decomposition of Rn+1 in simplicial cones with vertices on Sn.

� p = (p1, . . . , pm) a family of m ≤ n homogeneous polynomials with n+ 1 variables.

� p̃ = (p̃1, . . . , p̃m) the piecewise linear functions associated to p and (Si)i∈I .

� a heuristic to refine the decomposition (that may use all other inputs).

� a minimal size for simplices.

� a heuristic to split a simplex in 2

Algorithm:

1. For each face F of one of the simplex call the procedure TEST_FACE. If all calls return TRUE,
return p̃.

2. If the procedure TEST_FACE returned FALSE on F , try to refine the decomposition, preferably
in a way that splits F .

3. Update p̃ to the new decomposition.

4. Call back MAIN_LOOP with the refined subdivition and new p̃.

Here is the entry point of our implementation:

Procedure 11 (MAIN).
Inputs:

� p = (p1, . . . , pm) a family of m ≤ n homogeneous polynomials with n+ 1 variables.

� a heuristic to refine a decomposition of Rn+1 in simplicial cones.

� a minimal size for simplices.

� a heuristic to split a simplex in 2.
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Algorithm:

1. Build (Si)i∈I a decomposition of Rn+1 in simplicial cones with vertices on Sn.

2. Build p̃ = (p̃1, . . . , p̃m) the piecewise linear functions associated to p and (Si)i∈I .

3. Call the procedure MAIN_LOOP.

4. If it return p̃, build the piecewise affine projective variety of equation p̃(x) = 0 and return it.

Proposition 12. Given p = (p1, . . . , pm) a family of m ≤ n homogeneous polynomials with n+ 1
variables, if there is only one polynomial or if conjecture 8 is true, the above algorithm loops or
returns a piecewise affine projective variety that is isoptopic to the variety defined by p(x) = 0.

Proof. This is a consequence of the definitions and the properties of Bernstein basis. It is important
to note that the property “0 is the convex hull” used in the algorithm is invariant by a linear change
of variable.

Proposition 13. Let p = (p1, . . . , pm) a family of m ≤ n homogeneous polynomials with n + 1
variables. Assume that the matrix ∇p(x) is full rank for all x ∈ Sn such that p(x) = 0. Then, our
algorithm terminates, if the heuristic to refine decompositions, when repeated, gives decompositions
such that all simplicial cones have diameter that converges to 0, when intersected with the unit
sphere.

Proof. If the diameter of all simplicial cones restricted to Sn are small enough, then p will be
almost linear on each of them and the points where p(x) = 0 will be separated from the points
where the matrix ∇p(x) is not full rank. This means that one of the two tests will always succeed
in the procedure TEST_FACE.

Test for 0 in the convex hull Clearly we do not want to compute the convex hull to check for
one point. This problem is traditionally implemented as a reduction to linear programming. We
chose to implement it directly:

For a finite set of vector A, we try to minimise ‖N‖2 for N =
∑
V ∈A αV V with αV > 0 for all

V ∈ A and
∑
V ∈A αV = 1. We perform this minimisation by alterning two kinds of steps:

� Linear steps: we solve a linear system to find a direction which is not always a direction of
descent but that often offers rapid progress. This kind of steps may set some of the αV to
zero.

� Descent in the direction V ∈ A if N.V ≤ 0. It is easy to show that ‖N+αV
1+α ‖

2 < ‖N‖2 in this
case. This kind of steps increase αV , even if αV = 0. We stop if there is no such vector V
and we know that 0 /∈ H(A).

� We stop if ‖v‖2 is too small (meaning we can probably reach 0).

� It is important to avoid setting αV = 0 in a linear step, followed by a descent in the direction
V . This yields to very slow progress. Thus, we do not select V for descent if αV was set to
0 by the previous linear step.

This relatively simple algorithm works very well for this specific case and might be the object
of a separate publication in the near future. It is worth noticing that our algorithm is not an
interior point method nor a method that stay on the border of the convex hull.

We mentioned the algorithm to make it clear that when we fail to find a descent direction, we
have N.V > 0 for all V ∈ A and therefore N is the vector given by the geometric form of Hahn
Banach theorem and considered by the proof.
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Figure 4: simplicial decomposition for pε(x, y, t) = (x2 + y2 − t2)2 + εxy(x− y)(x+ y)

Certificate and exact algorithm The above algorithm is implemented using 64 bits floating
point numbers. However, the procedure TEST_FACE keeps a trace of the subdivision it did as a
binary tree and it also keeps in the leaf of the tree a boolean giving the reason of success: either
TRUE if the sign of the polynomials was constant or FALSE if the test for the convex hull succeeded.
In the latter case it also keeps the vectors N given by the algorithm for each value of σ ∈ {−1, 1}m.

Such a tree is associated to each face of the simplicial decomposition and form a certificate.
This allows to recheck the criteria using exact rational arithmetic and the only operations are:

� change of coordinates in the polynomials,

� scalar products and

� comparisons.

As a result the final check of this certificate is fast (in practice faster that the initial com-
putation) and ensures an exact result (if conjecture 8 is true when codimension is greater than
1).

7 Experiments

Note: all figures in this article use a projection of the projective space into a sphere, so we see the
entire variety.

Study near singularity Our first example is with the family of quartic polynomials:

pε(x, y, t) = (x2 + y2 − t2)2 + εxy(x− y)(x+ y)

When ε > 0, the curve pε(x, y, t) = 0 has four components and it converges to a circle of double
points when ε → 0. However, a simplicial decomposition with only 24 triangles seems sufficient
for any ε > 0. Only the number of subdivision of each triangle increases when ε → 0. Figure 4
is the simplicial decomposition (in green) and the curve pε(x, y, t) = 0 we get for some ε > 0 (in
black):

We now give a table that gives for some value of ε, the total computing time, the time for
the exact test using rational arithmetic and the maximum number of time we split a simplex in 2
parts (i.e. maximum depth of recursive call in TEST_FACE).
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ε time Q-time Q-time/time max splits
5.10−1 0.079s 0.016s 20% 0
5.10−2 0.150s 0.022s 15% 6
5.10−3 0.264s 0.095s 36% 10
5.10−4 0.607s 0.210s 35% 14
5.10−5 1.638s 0.656s 40% 17
5.10−6 5.380s 2.548s 47% 20
5.10−7 17.087s 6.732s 39% 24

The maximum number of splits seems linear in the exponent of ε, therefore the number of
subdivision may be at most linear in ε (some simplices needs less subdivision than others).

We also observe that the final exact test using rational arithmetic never exceeds half of the
total running time. Remark: very small ε would require multi-precision which we implemented
using GMP. But it is far too slow in practice.

Some curves and surfaces in 2D and 3D It is well know that sextic curves have at most 11
components and that this can be realized in three ways: one oval containing p empty ovals and
10−p empty ovals outside for p = 1, 5 or 9 [18, 22]. Construction being respectively due to Harnak
(figure 5), Hilbert (figure 6) and Gudkov (figure 7). Our implementation succesfully computes the
topology of these three curves.

We also experimented succesfullt with two quartic surfaces and two complete intersection
of degree 3 × 2 and 4 × 2: one maximal quartic (referred as “M quartic”, figure 8) with two
components, a sphere and a sphere with 10 handles and another quartic with 10 spheres (referred
as “M-2 quartic”, figure 1 in the introduction). We also show the intersection of four planes
(product of four linear forms) and a sphere which are used to build the M-2 quartic (referred as
“M-2 quartic ∩ S”). Finally, we tested with a 3D curves which is the intersection of a cone and a
cubic surface that gives 5 components (referred as “cubic ∩ cone”). This last example is used in
[12, 13] to construct Del Pezzo surfaces of degree 1.

Results are summarised in the table below where we give for each example the codimension
(number of polynomials) and projective dimension (number of variables - 1), the total computing
time, the time to check the certificate, the total number of simplices in the decomposition and the
maximum number of splits (i.e. maximum depth of recursive call in TEST_FACE).

The number of simplices is smaller than the number of simplices in the corresponding Newton
polytope (counting all quadrants/octants): 4 × 36 = 144 for sextic curves and 8 × 30 = 240 for
quartic surfaces.

codim/dim time Q-time simplices max splits
Harnack’s sextic 1/2 1.430s 0.142s 60 8
Gudkov’s sextic 1/2 15.748s 1.488s 76 27
Hilbert’s sextic 1/2 26.036s 7.724s 84 23

M quartic 1/3 5.243s 0.845s 204 7
M-2 quartic 1/3 4.380s 0.639s 141 7
cubic ∩ S 2/3 4.050s 0.280s 54 16

M-2 quartic ∩ S 2/3 12.809s 1.304s 87 17

Random varieties We also performed experiments with random Polynomials for Bombieri’s
norm. This norm is known to give more interesting topology, hence more difficult to compute
than with Euclidien norm. It shows the limit of the current implementation: we can compute
quartic hyper-surfaces up to dimension 5 in around 20 minutes.

For the zero dimensional case (for which much better approach exists like msolve), we managed
to handle in dimension 4 systems with 3 polynomials of degree 2 and one of degree 3 (total degree
24) in around 8 minutes (this takes less than a second with msolve).

You may find in appendix our raw measurements for random polynomials.
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Figure 5: Harnack’s sextic

Figure 6: Hilbert’s sextix, with two zooms
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Figure 7: Gudkov’s sextix, with two zooms

Figure 8: A maximal quartic “M quartic”
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It is worth noticing that for all these random tests, the exact test did always succeed. This is
not so surprising as random varieties are expected to be smooth enough.

Problematic cases As mentioned in the previous section, concentric circles (or near to parallel
curves) are currently problematic. We experimented with

p(x, y, t) = (x2 + y2 − (1− α)2)(x2 + y2 − (1 + α)2)

We give in the table below the computing time, number of simplices and max splits as above.
For a difference of radius of 2α = 10−4 we need far more simplices than Newton the polytope for
a quartic curve 4× 16 = 64. This is rapidely unfeasible.

2α time simplices max splits
1 0.083s 12 1

10−1 0.370s 48 6
10−2 1.793s 128 13
10−3 20.476s 690 20
10−4 417.259s 3504 28
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A Timings on random polynomials

Here is how to read a line in these raw results:

4 , (2 , 2 , 2 , 3) => 348.0254 s [ 16 . 824 9 s ] < 364.8503 s (2 samples )

You can read from left to right:

� the projective dimension,

� the degree of each polynomials,

� the average time to compute a piecewise linear approximation,

� the standard deviation,

� the worst time observed and

� the number of samples.

2 , (15) => 9.4937 s [ 4 . 9042 s ] < 20.0521 s (17 samples )
2 , (14) => 6.0617 s [ 2 . 6986 s ] < 12.4414 s (17 samples )
2 , (13) => 4.1027 s [ 2 . 0081 s ] < 7.2388 s (17 samples )
2 , (12) => 2.5252 s [ 0 . 9513 s ] < 3.8564 s (17 samples )
2 , (11) => 1.3036 s [ 0 . 7160 s ] < 3.0407 s (18 samples )
2 , (10) => 1.0300 s [ 0 . 7261 s ] < 3.2537 s (18 samples )
2 , (9 ) => 0.4945 s [ 0 . 2215 s ] < 0.8207 s (18 samples )
2 , (8 ) => 0.3474 s [ 0 . 2246 s ] < 0.9675 s (18 samples )
2 , (7 ) => 0.1532 s [ 0 . 0977 s ] < 0.4170 s (18 samples )
2 , (6 ) => 0.1279 s [ 0 . 0744 s ] < 0.2980 s (18 samples )
2 , (5 ) => 0.0749 s [ 0 . 0715 s ] < 0.2773 s (18 samples )
2 , (4 ) => 0.0537 s [ 0 . 0756 s ] < 0.3414 s (18 samples )
2 , (3 ) => 0.0233 s [ 0 . 0249 s ] < 0.0984 s (18 samples )
2 , (2 ) => 0.0057 s [ 0 . 0030 s ] < 0.0121 s (18 samples )
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3 , (8) => 64.0352 s [ 12 . 9702 s ] < 87.0749 s (9 samples )
3 , (7 ) => 17.9244 s [ 4 . 5345 s ] < 24.4767 s (11 samples )
3 , (6 ) => 6.7120 s [ 2 . 3389 s ] < 9.9139 s (11 samples )
3 , (5 ) => 2.0908 s [ 0 . 5444 s ] < 3.0534 s (11 samples )
3 , (4 ) => 0.8662 s [ 0 . 4510 s ] < 1.6798 s (11 samples )
3 , (3 ) => 0.4839 s [ 0 . 3853 s ] < 1.4661 s (11 samples )
3 , (2 ) => 0.0368 s [ 0 . 0165 s ] < 0.0716 s (12 samples )
4 , (5 ) => 91.6522 s [ 43 . 2871 s ] < 164.7578 s (6 samples )
4 , (4 ) => 21.3854 s [ 9 . 6121 s ] < 34.8824 s (11 samples )
4 , (3 ) => 3.2500 s [ 1 . 2441 s ] < 5.7096 s (11 samples )
4 , (2 ) => 0.2308 s [ 0 . 0108 s ] < 0.2612 s (11 samples )
5 , (4 ) => 1119.8743 s [183 .6737 s ] < 1303.5480 s (2 samples )
5 , (3 ) => 127.2540 s [ 52 . 1713 s ] < 192.3819 s (3 samples )
5 , (2 ) => 3.8360 s [ 1 . 4788 s ] < 5.0987 s (3 samples )
6 , (3 ) => 2361.25 s [ 0 ] < 2361.25 s (1 sample )
6 , (2 ) => 14.4625 s [ 0 . 1260 s ] < 14.6000 s (5 samples )
2 , (8 , 8) => 5.2380 s [ 3 . 2701 s ] < 12.7953 s (9 samples )
2 , (7 , 8) => 6.2327 s [ 2 . 8787 s ] < 10.1879 s (9 samples )
2 , (7 , 7) => 2.5434 s [ 1 . 5762 s ] < 6.7730 s (15 samples )
2 , (6 , 8) => 2.5903 s [ 1 . 8971 s ] < 6.3826 s (9 samples )
2 , (6 , 7) => 2.7967 s [ 1 . 2523 s ] < 5.1338 s (15 samples )
2 , (6 , 6) => 2.1022 s [ 2 . 2025 s ] < 8.3182 s (16 samples )
2 , (5 , 8) => 1.9484 s [ 0 . 8972 s ] < 3.1652 s (10 samples )
2 , (5 , 7) => 1.6489 s [ 1 . 2579 s ] < 5.5694 s (16 samples )
2 , (5 , 6) => 2.3762 s [ 2 . 2781 s ] < 7.5396 s (16 samples )
2 , (5 , 5) => 1.1877 s [ 0 . 9082 s ] < 3.2313 s (16 samples )
2 , (4 , 8) => 1.3558 s [ 0 . 7226 s ] < 2.5465 s (10 samples )
2 , (4 , 7) => 1.1043 s [ 0 . 5974 s ] < 2.2448 s (17 samples )
2 , (4 , 6) => 0.8182 s [ 0 . 5225 s ] < 1.7687 s (17 samples )
2 , (4 , 5) => 0.6955 s [ 0 . 5440 s ] < 2.1073 s (17 samples )
2 , (4 , 4) => 0.7081 s [ 0 . 7159 s ] < 2.6433 s (17 samples )
2 , (3 , 8) => 1.1122 s [ 0 . 6825 s ] < 2.6819 s (11 samples )
2 , (3 , 7) => 1.0376 s [ 0 . 7008 s ] < 3.1081 s (17 samples )
2 , (3 , 6) => 0.7728 s [ 0 . 7388 s ] < 3.3402 s (17 samples )
2 , (3 , 5) => 0.4749 s [ 0 . 3775 s ] < 1.3720 s (17 samples )
2 , (3 , 4) => 0.3867 s [ 0 . 3490 s ] < 1.3088 s (17 samples )
2 , (3 , 3) => 0.3086 s [ 0 . 3875 s ] < 1.6391 s (17 samples )
2 , (2 , 8) => 0.5736 s [ 0 . 4633 s ] < 1.7001 s (11 samples )
2 , (2 , 7) => 0.8804 s [ 1 . 4395 s ] < 4.9613 s (17 samples )
2 , (2 , 6) => 0.2350 s [ 0 . 1518 s ] < 0.6401 s (17 samples )
2 , (2 , 5) => 0.2294 s [ 0 . 2023 s ] < 0.8916 s (17 samples )
2 , (2 , 4) => 0.3407 s [ 0 . 6465 s ] < 2.8759 s (17 samples )
2 , (2 , 3) => 0.0939 s [ 0 . 1056 s ] < 0.4515 s (17 samples )
2 , (2 , 2) => 0.0578 s [ 0 . 0621 s ] < 0.2712 s (17 samples )
3 , (5 , 5) => 88.8346 s [ 39 . 5227 s ] < 157.2866 s (8 samples )
3 , (4 , 5) => 43.8346 s [ 13 . 6107 s ] < 64.2336 s (8 samples )
3 , (4 , 4) => 23.7975 s [ 14 . 3489 s ] < 61.8225 s (9 samples )
3 , (3 , 5) => 28.8840 s [ 25 . 3741 s ] < 94.8858 s (9 samples )
3 , (3 , 4) => 13.9328 s [ 6 . 0994 s ] < 23.6953 s (9 samples )
3 , (3 , 3) => 6.5742 s [ 2 . 0125 s ] < 9.1454 s (9 samples )
3 , (2 , 5) => 16.0180 s [ 13 . 6073 s ] < 52.4697 s (9 samples )
3 , (2 , 4) => 11.2471 s [ 12 . 0677 s ] < 40.5447 s (9 samples )
3 , (2 , 3) => 1.7853 s [ 1 . 1207 s ] < 3.9345 s (9 samples )
3 , (2 , 2) => 0.9715 s [ 1 . 2720 s ] < 4.2365 s (9 samples )
4 , (2 , 3) => 120.8822 s [ 43 . 8194 s ] < 204.6149 s (6 samples )
4 , (2 , 2) => 52.8344 s [ 44 . 7051 s ] < 123.6788 s (8 samples )
3 , (4 , 4 , 4) => 57.0216 s [ 24 . 2671 s ] < 102.3699 s (8 samples )
3 , (3 , 4 , 4) => 63.4938 s [ 22 . 6517 s ] < 107.4020 s (8 samples )
3 , (3 , 3 , 4) => 39.8249 s [ 18 . 1909 s ] < 72.8629 s (8 samples )
3 , (3 , 3 , 3) => 21.1542 s [ 13 . 3550 s ] < 50.7229 s (8 samples )
3 , (2 , 4 , 4) => 52.3019 s [ 55 . 8282 s ] < 196.6823 s (8 samples )
3 , (2 , 3 , 4) => 14.7853 s [ 9 . 9172 s ] < 31.4450 s (8 samples )
3 , (2 , 3 , 3) => 11.2110 s [ 4 . 0091 s ] < 18.0787 s (8 samples )
3 , (2 , 2 , 4) => 14.8802 s [ 9 . 2282 s ] < 38.0585 s (8 samples )
3 , (2 , 2 , 3) => 5.7705 s [ 2 . 6911 s ] < 9.0264 s (8 samples )
3 , (2 , 2 , 2) => 5.9955 s [ 4 . 1095 s ] < 14.1836 s (8 samples )
4 , (2 , 2 , 3) => 480.8930 s [111 .0565 s ] < 573.5631 s (3 samples )
4 , (2 , 2 , 2) => 166.5942 s [ 86 . 3898 s ] < 292.1297 s (4 samples )
4 , (2 , 2 , 2 , 3) => 348.0254 s [ 16 . 8249 s ] < 364.8503 s (2 samples )
4 , (2 , 2 , 2 , 2) => 247.7984 s [ 24 . 4447 s ] < 282.2358 s (3 samples )

22


	Introduction
	Contribution
	A global criteria
	Testing the criteria
	Examples
	Another conjecture
	Search for a simplicial decomposition
	Related work
	Viro's method
	Decomposition methods using Descartes' rule of sign
	Other decomposition methods
	Algebraic methods

	Further theoretical research
	Further implementation research
	Thanks

	Notation and convention
	Hypersurfaces on a compact polyhedron
	Hypersurfaces on the projective space
	Increasing codimension
	Implementation
	Experiments
	Timings on random polynomials

