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ABSTRACT. We give an existence and uniqueness result of solu-
tions of ordinary differential equations =’ = f(¢,x) when f has
discontinuity at ¢ = 0, and the time dependent Lipschitz constant
L(t) for z = f(t, ) is not integrable near 0.

1. MOTIVATION

We start with an example: we consider the 2 differential equations:

x x
x’ = tanh (—) 2’ = tanh <_)
[t In([2])] I

None of them are Lipschitz when ¢t converges to 0. Nevertheless,
as shown in figure m, solving these equations numerically® seems to
indicate continuity of the solutions in the initial conditions for the first
one, while this seems not to be the case for the second one. In that
latter case, the gap of ~ 0.15 observed at t = 0.5 corresponds to a
difference of 27°9 in the initial condition at t = —0.1.

Note: To have stable numerical result, especially in the second ex-
ample, we had to use very small steps near t = 0.

Here is a definition that captures these examples:

Definition 1. Let I =] —1,1], let ¢ : I — R, o(t) = [tIn(|t])], let
X* be IN{0} x R™. We say the f: (t,x) € X* — R™ is p-Lipschitz, if
(1) f is continuous on X* .
(2) V(t,2) € X% | f(t, 2)| < K([ln([t])| + 1) for some K € R.
(3) 3L € R%,Va,y € R™, (t,2) € X*, (t,y) € X* imply

[£(t,2) = f(E 9| < L)z —y]

E-mail address: christophe@raffalli.eu, christophe.raffalli@upf.pf.
IThe python code of the examples, using numpy, is available from the web page
of the author at https://raffalli.eu/downloads/rk4.py.
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FIGURE 1. Comparison of solutions of two ODEs
with initial condition z(—0.1) = 427 for ¢ =

1,...,50. It is computed using RK4 method with dt =
max(1072¢, 107 1)

The first example is ¢-Lipschitz, while the second if not. The main
result of the paper (theorem fj) is to prove existence and uniqueness of
solutions for O.D.E. with z’(t) = f(¢t,z(t)) when f is ¢-Lipschitz.

Among the many existence and uniqueness theorems for ODE ([T,
, E, B, é, @], there are specific results where the Lipschitz condition
is time dependent. There is a result by Hartman and Wintner [@]
that would give existence and uniqueness if ¢ had a finite integral or
a result by Osgood [H] if % had an infinite integral, but these do not
apply. There seems to be no result covering the first example above
or our definition. For the sole existence of solutions, Carethéodory’s
theorem [Iﬂ] allows to conclude, but we choose to reprove existence for
the sake of completeness.

The condition f(t,z) < K|In(|t])| + 1 is essential to our proof, but
we conjecture that it may be relaxed by f(t,x) < m(|t|) with m(t)
being integral as suggested by the second example of figure P

2. SOME USEFUL FUNCTIONS

Definition 2. Let L € R, we define (see figure B)

o o] = LIN0} = R, o(t) =
o U, ] —1,1[> Ry, ¥ (0)=0,V,(t) = (—In(|t])"F ift 0.

2If a reader has a proof covering the case where f is only integrable, let the
author of this note know, I have very interesting applications...
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FiGure 2. Examples with f unbounded, our theorem
applies to the first example, still the second example

seems to admit unique solutions
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FIGURE 3. Plot of ¢ and ¥,

Lemma 3. We have fort €)0, 1[, U'(t) = Lo(t)¥(t) and fort €]—1,0],
U’ (t) = —Lo(t)V(t).

Proof. 1t t > 0,V (t) = —L(—t) (= 1In(¢))"L!
— Lt (= () (1)

= Lp(t)¥, (t) because p(t) = — lln(t) for t > 0.
Ift <0,0}(t) = —Lt Y(—In(—t)) L1

= —Lt~ (= In(—1)) T (?)

= Lo(t)¥, (t) because ¢(t) = 1 for t < 0.

tIn(—t)
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Definition 4. we define g : [0,1] — [0,2], g(t) = —tln(t) + 2t and
h(t) = g~ 1(t) which exists as g is non decreasing. We have ¢'(t) =
—In(t) + 1 which is our bound for f.

Lemma 5. For L > 0, lim,_,,tIn(h(t))* = 0.

Proof. We have lim, ., g(t) = 0, so we can do the change of variable
u = h(t) hence t = g(u) and we find tIn(h(t))X = g(u)In(u)t =
(—uln(u) + 2u) In(u)L whose limit is indeed 0. O

3. OUR MAIN RESULT

Lemma 6. Using the notations of definition B, if f:(t,r) e X* > R
is p-Lipschitz then, the differential equation

a'(t) = [t x(t)) (1)

admits solutions with the initial condition x(ty) = x, for (t,z,) € X
(even for ty, = 0). Furthermore, the solutions are continuous with
respect to the initial conditions, hence unique.

Proof. 1t is clear that f is Lipschitz in the neighbourhood of any ¢, € I\
{0}, hence by the standard Picard-Lindel6f-Cauchy-Lipschitz theorem
the equation (|l) admit solutions for any initial condition z(t,) = x, €
R™. We now show the existence of local solutions for initial conditions
z(0) = xy € R™ with (0,z,) € X.
Let us define b = min(1, 57) and the interval J =] — b,b[C I. We

define ¥ the set of continuous v : J — R” satisfying:

e vis C' on J\ {0},

hd 7(0) = Lo,

e and such that |y — zy[, < K where ||, is

= £y (t
My =, max o))

We define the following operator on W:

F(2)(t) = 7o + / F(u, () du

We first show that F(z) € . It is clear that F(x) is of class C!
on J \ {0}, as f is continuous. It is also clear that F(x)(0) = x,.
Therefore F(z) is defined on J. Finally, we have:

pOIF@)(E) — 2o < (t) /0 £ (w, 2 (w))]du
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< ol ‘/K|1n|t||+1>]
< G(OR(tIn ]| + 21
< K+2K|In|t||™!

< 3K

This proves that F : ¥ — W. Now, we prove that F' is contracting
for the norm |_||,: for any ¢ € J and x,y € ¥, we have:

|[F(2)(t) — Fy)@)] < /O||f(u,w(U))—f(uyy(U))lldu

/ Lo(t)|e(u) — y(u)|du

0

t
L / dulllz — .,
0
bz — g,

IN

7\

7\

IA

1
§||93 — Yy, because b < Y7

Therefore, F is contracting on ¥ for the norm |_||,. This ensures
the existence of a fixpoint of F', i.e. the existence of a solution in J
with initial condition z(0) = z,.

Note: the above proof does not establish uniqueness, or more pre-
cisely, it establish uniqueness of local solutions such that ¢(t)|| F'(x)(t)—
x| is bounded We need the following result to get both uniqueness and
continuity of arbitrary solutions with respect to the initial condition:

Lemma 7. Using the notations of the previous definition, if f : (t,z) €
X* — R™ is @-Lipschitz then, if x and y are two solutions defined on
[u,t] (resp. [—u,—t]) where 0 < u,t < 1, then we have

L
ly(6) =2 (t)] < (2K + 1) | RlmextwmiGalt 2Dy (u) — a(u)|
See deﬁmtzon for the definition of h.

This implies continuity of solutions with respect to the initial condi-
tion. In u = 0, this uses lemme [ to have lim, o In(h(|v]))*v = 0. To
get continuity when ¢ and u have opposite signs, we use the above result
twice with 0,¢ and 0, u. This ends the proof of the main theorem. [J

Proof of the above lemma. Let us consider two solutions x and y de-
fined on J = [u,t] with 0 < u < t € I. In what follows, we will write
u = max(u, min(¢, h(|ly(u) —z(w)|))). If ||y(u) —z(u)|| > 1, we consider
that h is infinite and u = w.
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We have u < wu < t and we compute:

yit)—a(t) = s [ H(sp() = Flsals))ds
ly(t) = 2O < otw) = sl + [ 1#((s,05) = Fs.a(s)lds
Iy O < lyw) = atw)l+

QK/ —In(s) + 1)ds+

/ Hf 59(s)) — Fs,2())) s
lv(t) =0 < o)~ au ||+2K< @) — g(uw)+

)
/ PS)ly(s)) ()] ds

ly(t) == < EK + Dl - o]+
[ Letlts) — x(s)lds @)

Remark: if uw < u < t, the 2K term is useless. We define for
u<v<t:

F(o) = [ Lels)lyts) — o(s)lds
We have F’(v) = Ly(v)|ly(v)) — x(v)| and therefore by (E)
ly(v) = z(v)| = F(v) < (2K + 1)[y(u) — z(u)]
Multiplying both sides by ¥’ (v) gives
UL ()y(v) —z()] — VL) F(v) < (2K + 1)V (v)[y(u) — z(u)|
Using lemma B:
Up(v)F (v) = VL (0)F(v) < (2K + )W (v)]y(u) — z(u)|

Multiplying both sides by ¥72(v) gives

aav(‘I’L( )T (v) < (2K + 1)UL (0) 81 (v) 2y (u) — z(u)]

Integrating between u and ¢, using F'(u) = 0:

UL ()7 F() < QK+ 1)(=8L(0) 7" + Uy (@) ) y(u) — z(u)]

F(t) < (2K + 1) (qu—% - 1) ly(u) — 2(w)]

~_ =
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Using (E)

() —z(u
B () — ()]

Replacing ¥; by its definition, we find for 0 < u <t < 1:

In(@)|"

This is the wanted inequality when v < t. We now search an in-
equality in the opposite direction. Similarly to the previous case, we
write © = max(u, min(¢, |y(t) —x(¢)||)) (notice the change, as t replaces
u). We have

ly(t) — ()] < 2K +1)

ly(t) —z(@)] < 2K +1)

y(t) —x(t) = y(U)-%(UH/ f((s,y(s)) = f(s,2(s)))ds

ly(u) — z(u)
ly(u) = z(u)

ly(t) —2(t)] + / 1£((s,9(s)) — F(s,2(s)))[ds
ly(t) — )|+
2K/ —1In(s) + 1)ds+

/ 1£((s, 9(s)) — £(5,2(s)))|ds
o) — 2@l < oo o) + 2K (g8 — s}t

[ Eeluts) — s(slas
o) o0 < BK +1ly() — 2w+
/ o(5)ly(s) — a(s)lds 3)
We define ' .
F(v) = / Lip(s)ly(s)) — 2(s) |ds
We have F'(v) = —Lo(v)|y(v)) — 2(v)] and therefore by (), we have
ly(v) — o) — F(v) < 2K + 1y(t) — o(0)]
Multiplying both sides by ¥’ (v) > 0
W) (0)y(0) — o) — W5 (0)F(v) < 2K + 1), 0)ly(t) — a()]
Using lemma B:
U (0)F(0) = W, (0) F(0) < (2K + )W, (0)ly(t) — a(0)]
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0 (WL () F() < (2K + DL (0)y(t) — ()]

e

Integrating for v between w and ¢, using F'(t) =0

V@) F@) < 2K+ 1)V ) =V (@)|y(t) — ()]

F) < 2K + 1) (G405 ~1) Iyto) — (o)

Using ()

ly(u) = z(w)| < (2K +1) el ly(t) = =(@)]

v, ()

Replacing ¥; by its definition, we find for 0 < u <t < 1:
In(a@)|"

fy(w) — ()] < (2K + 1) |2 u(t) — =(0)

It remains to show the same equations for 1 < ¢,u < 0: this can be

deduced from the positive case by the change of variable ¢t —» —t. [

[1]
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