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Chapter 1

Introduction.

The “PhoX Proof Checker” is an implementation of higher order logic, inspired by Krivine’s
type system (see section 1.1), and designed by Christophe Raffalli. PhoX is a Proof assistant
based on High Order logic and it is eXtensible.

One of the principle of this proof assistant is to be as user friendly as possible and so to
need a minimal learning time. The current version is still experimental but starts to be really
usable. It is a good idea to try it and make comments to improve the future releases.

Actually PhoX is mainly a proof editor for higher order logic. It is used this way to teach
logic in the mathematic department from “Université de Savoie”.

The implementation uses the Objective-Caml language. You will find in the chapter 10
the instruction to install PhoX.

1.1 Motivation.
The aim of this implementation was first to implement Krivine’s Af2 [1, 2, 3] type system,
that is a system which allows to derive programs for proofs of their specifications.

The aim is now also to realize a Proof Checker used for teaching purposes in mathematical
logic or even in “usual” mathematics.

The requirements for this new proof assistant are (it will be very difficult to reach all of
them):

• Most of the “usual” mathematics should be feasible in this system. Actually PhoX is
basically higher order classical logic, a more expressive (but not stronger) extension of
the theory of simple types due to Ramsey [6]1. Feasability is probably much more a
probleme of “ergonomics” than a probleme of logical strength.
Anyway it is always possible to represent any first order theory, you can add axioms and
first order axiom’s schematas are replaced by second order axioms. You can represent
this way set theory ZF in PhoX2.

• The manipulation of the system should be as intuitive as possible. Thus, we shall try
to have a simple syntax and a comprehensive way to build proofs within our system.
All of this should be accessible for any mathematician with a minimal learning.

1which itself derives from the type system of Russell and Whitehead
2For now PhoX does not give the user any mechanical way to control that you use only first order instances

of these schematas
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6 CHAPTER 1. INTRODUCTION.

• For programs extraction, we already know that PhoX provide enough functions (all
functions provably total in higher order arithmetics) but we also need an efficient way
to extract programs which should guaranty the fidelity to the specified algorithm and a
good efficiency. The system will be credible only after bootstrapping which is the final
(and long term) goal of this implementation !

1.2 Actual state.
Like some other systems, the user communicates with PhoX by an interaction loop. The user
sends a command to the system. The prover checks it, and sends a response, that can be
used by the user to carry on. A sequence of commands can be saved in a file. Such a file can
be reevaluated, or compiled. This format is the same for libraries or user’s files.

The prover has basically two modes with two sets of commands : the top mode and the
proof mode. In the top mode the user can load libraries, describe the theory etc. In the proof
mode the user proves a given proposition.

A proof is described by a sequence of commands (called a proof script), always constructed
in an interactive way. The proof is constructed top-down : from the goal to “evidences”. In
case the goal is not proved by the command, responses of the system gives subgoals that
should be easier than the initial goal. The system gives names for generated hyptothesis
or variables. These names make writing easier, but the proof script cannot be understood
without the responses of the system.

The system implements essentially the construction of a natural deduction tree in higher
order logic, but can be used without really knowing the formal system of natural deduction.

The originality of the system is that the commands can be enhanced by the user, just
declaring that some proved formulas of a particular form have to be interpreted as new rules.
That allow the system to use few commands. Each command uses more or less automatic
reasoning, and a generic automatic command composes the more basics ones.

A module system allows reusing of theories with renaming, eliminating constants and
axioms by replacing them with definitions and theorems.

The existing libraries are almost all very basic ones (integers, lists…), but some examples
have been developped that are not completly trivial : infinite version of Ramsey theorem, an
abstract version of completness of predicate calculus, proof of Zorn lemma …

In the current version programs extraction is possible but turned off by default and does
not work with all features, see section A.1.8. Extraction is possible for proofs using intuitionis-
tic or classical logic. Programs extraction implements what is described in [1] for intuitionistic
functionnal second order arithmetic, but extended to classical logic and 𝜆𝜇-calcul : see [4].

1.3 Other sources of documentation
• The web page of PhoX:

https://raffalli.eu/phox/

• Try PhoX online:

https://raffalli.eu/public/phox/

https://raffalli.eu/phox/
https://raffalli.eu/public/phox/
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• The documentation of the library (file doc/libdoc.pdf). You can also look at the PhoX
files in the lib directory

• An article relating a teaching experiment with PhoX [5]. This article gives a short
presentation of PhoX giving one commented example and an appendix of the main
commands. It is also a good introduction to PhoX.
It is available from the Internet in french and english:

https://raffalli.eu/pdfs/arao-fr.pdf
https://raffalli.eu/pdfs/arao-en.pdf

• The folder tutorial/french : it contains tutorial. It is only in french. A folder
tutorial/english contains partial translation. Each tutorial comes with two files:
xxx_quest.phx and xxx_cor.phx. In the first one there are questions: “dots” that you
need to replace by the proper sequence of commands. The second one contains valid
answer to all the questions.
There are three kinds of tutorials (see the “README” in tutorial/french for a more
detailed description):

– Tutorial intended to learn PhoX itself: tautologie_quest.phx, intro_quest.phx
and sort_quest.phx.

– Tutorial intended to learn standard mathematics: ideal_quest.phx, commutation_quest.phx,
topo_quest.phx, analyse_quest.phx and group_quest.phx.

– Tutorial intended to learn logic: tautologie_quest.phx and minlog_quest.phx
(the latest tutorial is difficult).

• The folder examples of the distribution : they contain a lot of examples of proof de-
velopment. Beware that a lot of these examples were develop for some older version of
PhoX and could be improved using recent features.

https://raffalli.eu/pdfs/arao-fr.pdf
https://raffalli.eu/pdfs/arao-en.pdf
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Chapter 2

Installation

2.1 Opam installation.
Phox is available as an opam package. So typically on a linux debian installation, the following
should be enough:

apt-get install opam

opam install phox

2.2 Installation from source
Phox is available from github:

https://github.com/craff/phox

If OCaml and dune are installed on your linux machine, the following should work:
git clone https://github.com/craff/phox.git
opam install dune js_of_ocaml num camlp5

#or equivalent if you don't use opam
cd phox
make
make install

2.3 Web interface
We plan a “server version” of phox that should make it possible to use the web interface
with the local installation of phox, which is around 10 times faster than phox compiled with
js_of_ocaml.

2.4 Emacs interface.
It is possible to use PhoX directly in a “terminal”. But this is far from the best you can
do. You can use the PhoX emacs mode developped by C. Raffalli and P. Roziere using D.
Aspinall’s “Proof-General”.

9
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10 CHAPTER 2. INSTALLATION

Proof-General is available from

https://proofgeneral.github.io

2.4.1 Getting things to work.
First you need to have Emacs installed. Then you need to get and install Proof-General
version 3.3 or later. Remember where you installed Proof-General.

On debian, this can be done using

apt-get install emacs proof-general

Then you need to add the following line to the configuration file of Emacs1:

(setq load-path (cons "PATH-WHERE-PHOX-INSTALLED-EMACS-FILES" load-path))
(require 'phox-mode)

If later PhoX fails to start, you can also add a line

(set-variable 'phox-prog-name "PATH-TO-PHOX-EXECUTABLE -pg")

The -pg is essential when PhoX works with Proof-General.

2.4.2 Getting started.
To start PhoX, you only need to open with Emacs a file whose name ends by the extension
.phx. Try it, you should see a screen similar to the figure 2.1.

When using the interface, you use two “buffers” (division of a window where XEmacs
displays text). One buffer represents your PhoX file. The other contains the answer from the
system.

You should remark that under XEmacs (not Emacs) some symbols are displayed with a
nice mathematical syntax. Moreover, when the mouse pointer moves above such symbol, you
can see there ASCII equivalent.

To use it, you simply type in the PhoX file and transmit command to the system using
the navigation buttons. The command that have been transmitted are highlighted with a
different background color and are locked (you can not edit them anymore).

You should have a Proof-General menu allowing to evaluate your file. The main navigation
commands are:

Next-Step (Ctrl-c Ctrl-n sends the next command to the system.

Undo-Step (Ctrl-c Ctrl-u go back from one command.

Goto-Point (Ctrl-c Ctrl-ret enter (or undo) all the commands to move to a specific posi-
tion in the file.

Restart Scripting restart PhoX (sometimes very useful, because synchronisation between
the PhoX system and XEmacs is lost. In this case you to Restart followed by Goto.

All these menus are also associated with a keyboard equivalent (visible in the menu).
1This configuration file is (under Unix/Linux) named .emacs pr .emacs.d/init.el and located in your

home directory.
Your system administrator can also add lines in a general startup file to make PhoX available to all users.

https://proofgeneral.github.io
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Interpreted
commands

Uninterpreted
commands

Answer
from PhoX

navigation buttons Restart PhoX Interrupt PhoX

Figure 2.1: Sample of a PhoX screen under XEmacs with Proof-General
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2.4.3 Mathematical symbols.
Under Emacs, the input method names “TeX” should be activated by default under phox
mode. Therefore, you can type any mathematical symbol used by phox by typing its latex
equivalent. For instance:

• \forall for ∀

• \to for →

• \wedge for ∧

• \times for ×

• ...

2.4.4 Tips.
Proof-General can only work with one active file at a time. The best is to use the Restart
button when switching from one file to another, because command like Import or Use can
not be undone (so the Undo or Retract button will not give the expected result).

Sometimes, some information are missing in the answer window (this is very rare). You
also may want to see the results of other commands than the last one. In this case, there is a
buffer named *phox* available from the Buffers menu where you can see all the commands
and answers since PhoX started.

In some very rare cases, the Restart button may not be sufficient (for instance if you
changed your version of PhoX). You can use the menu PhoX/Exit PhoX to really stop the
system and restart it.



Chapter 3

The primitive symbols of the logic.

3.1 Sorts.
In the /AFD/ formal system, we will manipulate expressions. But we will have to consider
different kinds of expressions, for instance individual terms which are the objects of the logic
(which means that we will prove their properties) and formulas which express properties of
these objects. A sort1 is a formal name for a kind of expressions.

There exists one basic sort of objects: prop (for formulas or types). New basic sort may
be added, and sort may have parameters: for instance typing

Sort nat.
Sort list['a].

adds two sorts: one is called nat and the other is called list['a]. The second sort has one
parameter allowing to distinguish list[nat] and list[bool].

Complex sorts can be constructed using arrows: if 𝜏 and 𝜏 ′ are sorts, 𝜏 → 𝜏 ′ is also a
sort. Intuitively, an expression of sort 𝜏 → 𝜏 ′ is an expression of sort 𝜏 ′ with a hole for an
expression of sort 𝜏 . For instance the sort nat → prop is the sort of unary predicates on
natural numbers.

Warning: although we use the same notation, the arrow between sorts is not related with
the implication that we will introduce bellow.

3.2 The construction of expressions
The basic ways of constructing expressions (or simply-typed 𝜆-terms) in a given context (a
context declares the sorts of some variables) are the following:

Variable: A variable is just a name (see the chapter “Expressions, parsing and pretty print-
ing” of the documentation of PhoX for the description of valid variable identifiers in
PhoX). In a context where a variable x is of sort 𝜏 , x is an expression of sort 𝜏

Abstraction: 𝜆x e is an expression of sort 𝜏 → 𝜏 ′ if 𝑒 is an expression of sort 𝜏 ′ when the
context is extended to declare x of sort 𝜏 . The variable x is bound in the expression

0written by: Christophe Raffalli (Paris VII & Paris XII university)
1If you know typed 𝜆-calculus, sorts are simple-types constructed using atomic types like prop or nat

13



14 CHAPTER 3. THE PRIMITIVE SYMBOLS OF THE LOGIC.

𝜆x e. This means that its name does not matter (renaming x gives an expression that
we consider identical to the original one).

Application: e e′ (e e' in PhoX) is an expression of sort 𝜏 ′ if e is an expression of sort
𝜏 → 𝜏 ′ and if e′ is an expression of sort 𝜏 .
It is important to remark that an expression like 𝜆x x may have many sorts: prop →
prop𝑜𝑟(prop → prop) → (prop → prop). But any sort has a most general sort using
meta-variables written 'a. One can obtain all the other sorts by replacing the meta-
variables. For instance the most general sort of 𝜆x x is 'a → 'a.

3.3 The primitive logical constants
Here are the only primitive logical constants:

Implication → ($→ in PhoX) is an expression of sort prop → prop → prop. Thus it is
a binary connective. We can use it with an Infix notation: if A and B are formulas
(expressions of sort 𝐹 ), we can write A → B (A → B in PhoX) for the application of →
to A and B. The meaning of this formula is: A → B is true if B is true whenever A is
true.

Universal quantification ∀ ($∀ in PhoX) is an expression which admits any sort of the
form (𝜏 → prop) → prop.
As for implication, ∀ can be used with a special syntax: ∀x A denotes ∀𝜆x A (∀x A
denotes $∀ 𝜆x A in PhoX). ∀x A is true if A is true when x takes any value of sort 𝜏 if 𝑥
is used with the sort 𝜏 (which means that ∀ is used with the sort (𝜏 → prop) → prop).

Equality = ($= in PhoX) is an expression of sort 𝜏 → 𝜏 → prop for any sort 𝜏 (it is a
predicate constant of arity 2). As for implication, it can be used with an infix syntax.
This equality is equivalent2 to Leibniz equality: two terms are equal if they can not be
distinguished by a predicate: x = y is equivalent to ∀X (X x → X y).

Notation: We give some priorities to the different symbols to be able to omit some paren-
thesis. We will come back bellow on this point. Moreover, we allow the following abbrevia-
tions:

• ∀x,y,z A for ∀𝑥∀𝑦∀𝑧𝐴 (∀x ∀y ∀z A in PhoX).

• ∀x∶P A for ∀𝑥(𝑃𝑥 → 𝐴) (∀x:P A in PhoX).

• ∀x,y∶P A for ∀𝑥(𝑃𝑥 → ∀𝑦(𝑃𝑦 → 𝐴) (∀x,y:P A in PhoX).

• ∀x=y A for ∀𝑥(𝑥 = 𝑦 → 𝐴) (∀x = y A in PhoX). This abbreviation can be used with
any infix predicate symbol.

• A → B → C for 𝐴 → (𝐵 → 𝐶).
When producing LaTeX articles with PhoX one can decide not to use any of these abbre-

viations by setting some flags (see appendix B). Moreover, one can also decide to use standard
mathematical notations for application: 𝑓(𝑥, 𝑦) instead of f x y. We decided to use here the
nearest notation to the PhoX syntax.

2The equality is added as a primitive symbol to minimize the size of proofs using equality reasonning.
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3.4 Other definitions
To write mathematical formula, you use other connective that just universal quantification
(∀) and implication (→). Oher symbols are defined in the library prop.phx which is always
loaded when you start PhoX. This library and others are described in the “User’s manual of
the PhoX library”.
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Chapter 4

Examples

4.1 How to read the examples.
We write examples using standard mathematical notation, as it will appear on the screen.
To type the mathematical symbols, you need to type their LaTeX equivalent under emacs,
terminated by a trailing backslash (
) on the web interface, sometimes with a shortcut.

Symbol type in Emacs type in browser
Universal quantification ∀ \forall \forall\
Existential quantification ∃ \exits \exits\
Conjunction ∧ \wedge \&\ or \and\
Disjunction ∨ \wee \or\
Less or equal ≤ \leq \<=\ or \leq\
Greater or equal ≥ \qeg \>=\ or \qeg
Different ≠ \neq \!=\ or \neq\

What you have to type to enter a formula, is exactly what is obtained when you replace
each mathematical symbol by its ASCII equivalent.

We assume you read the previous section ! Moreover, you should report to the appendix
A to get a detailed desciption of each command.

4.2 An example in analysis
The example given below is a typical small standalone proof (using no library).

We prove that two definitions of the continuity of a function are equivalent. We give only
one of the directions, the other is similar. We have written it in a rather elaborate way in
order to show the possibilities of the system.

• We define the sort of reals.
>PhoX> Sort real.

Sort is the name of the command used to create new sorts, but you can also use it to
give name to existing sorts.

17



18 CHAPTER 4. EXAMPLES

• We give a symbol for the distance and the real 0 (denoted by 𝑅0) as well as predicates
for inequalities.
>PhoX> Cst d : real -> real -> real.
>PhoX> Cst R0 : real.
>PhoX> Cst Infix[5] x "≤" y : real -> real -> prop.
>PhoX> Cst Infix[5] x "<" y : real -> real -> prop.
>PhoX> def Infix[5] x ">" y = y < x.
>PhoX> def Infix[5] x "≥" y = y <= x.
The command Cst introduces new constants of given sorts while def is used to give
definitions. The commands to define inequalities are quite complex, because we want
to use some infix notation with a specific priority.

• Here are the two definitions of the continuity:
>PhoX> def continue1 f x =

∀𝑒>𝑅0 ∃𝑎>𝑅0 ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒).
>PhoX> def continue2 f x =

∀𝑒>𝑅0 ∃𝑎>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒).

• and the lemmas needed for the proof.
>PhoX> claim lemme1 ∀𝑥, 𝑦(𝑥 < 𝑦 → 𝑥 ≤ 𝑦).
>PhoX> claim lemme2 ∀𝑥>𝑅0 ∃𝑦>𝑅0∀𝑧(𝑧 ≤ 𝑦 → 𝑧 < 𝑥).
The command claim allows to introduce new axioms (or lemmas that you do not want
to prove now. You can prove them later using the command prove_claim). Beware
that there may be a contradiction in your axioms!

• We begin the proof using the command goal:
>PhoX> goal ∀𝑥, 𝑓(continue1 𝑓 𝑥 → continue2 𝑓 𝑥).
goal 1/1

|- ∀𝑥, 𝑓(continue1 𝑓 𝑥 → continue2𝑓𝑥)

• We start with some “introductions”.
%PhoX% intro 5.
goal 1/1
H := continue1 𝑓 𝑥
H0 := 𝑒 > 𝑅0

|- ∃𝑎>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒)
An “introduction” for a given connective, is the natural way to establish the truth of
that connective without using other fact or hypothesis. For instance, to prove 𝐴 → 𝐵,
we assume 𝐴 and prove 𝐵. Here, PhoX did five introductions:

– one for ∀𝑥 and one for ∀𝑓 ,
– one for the implication (continue1 𝑓 𝑥 → continue2𝑓𝑥),
– one for the ∀𝑒 inside the definition of continue2
– and finally, one for the hypothesis 𝑒 > 𝑅0.

Therefore, PhoX created three new objects: 𝑥, 𝑓, 𝑒 and two new hypothesis named H0
and H1.
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• We use the continuity of 𝑓 with 𝑒, and we remove the hypotheses H and H0 which will
not be used anymore.
%PhoX% apply H with H0. rmh H H0.
goal 1/1
G := ∃𝑎>𝑅0 ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)

|- ∃𝑎>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒)
The apply command is quite intuitive to use. But it is a complex command, performing
unification (more precisely higher-order unification) to guess the value of some variables.
Sometimes you do not get the result you expected and you need to add extra information
in the proper order.

• We de-structure hypothesis G by indicating that we want to consider all the ∃ and all
the conjunctions (You can also use lefts G twice with no more indication).
%PhoX% lefts G $∃ $∧.
goal 1/1
H := 𝑎 > 𝑅0
H0 := ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)

|- ∃𝑎0>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎0 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒)
The left and lefts are introductions for an hypothesis: that is the way to use an
hypothesis in a “standalone” way (not using the conclusion you want to prove or other
hypothesis).
We need to write a “$” prefix, because ∃ and ∨ have a prefix syntax and need other
informations. The “$” prefix tells PhoX that you just want this symbol and nothing
more.

• We use the second lemma with H and we remove it.
%PhoX% apply lemme2 with H. rmh H.
goal 1/1
H0 := ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)
G := ∃𝑦>𝑅0 ∀𝑧≤𝑦 𝑧 < 𝑎

|- ∃𝑎0>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎0 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒)

• We de-structure again G and we rename the variable 𝑦 created.
%PhoX% lefts G $∃ $∧. rename y a'.
goal 1/1
H0 := ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)
H1 := 𝑎′ > 𝑅0
H2 := ∀𝑧≤𝑎′ 𝑧 < 𝑎

|- ∃𝑎0>𝑅0 ∀𝑦(d𝑥 𝑦 ≤ 𝑎0 → d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒)

• Now we know what is the 𝑎0 we are looking for. We do the necessary introductions for
∀, ∃, conjunctions and implications (again, you could use intros several times with no
more indication). Two goals are created, as well as an existential variable (denoted by
?1) for which we have to find a value.

%PhoX% intros $∀ $∃ $∧ $→.
goal 1/2
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H0 := ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)
H1 := 𝑎′ > 𝑅0
H2 := ∃𝑧≤𝑎′ 𝑧 < 𝑎

|- ?1 > 𝑅0
goal 2/2
H0 := ∀𝑦(d𝑥 𝑦 < 𝑎 → d(𝑓𝑥)(𝑓𝑦) < 𝑒)
H1 := 𝑎′ > 𝑅0
H2 := ∀𝑧≤𝑎′ 𝑧 < 𝑎
H3 := d𝑥 𝑦 ≤ ?1

|- d(𝑓𝑥)(𝑓𝑦) ≤ 𝑒

• The first goal is solved with the hypothesis H1 indicating this way that ?1 is 𝑎′. The
second is automatically solved by PhoX by using lemma1, and this finishes the proof.
%PhoX% axiom H1. auto +lemme1.

Remark. Instead of the command auto +lemme1 one could also say elim lemme1. elim H0. axiom H3.
or apply H0 with H3. elim lemme1 with G. where G is an hypothesis produced by the first
command. We could also give the value of the existential variable by typing instance ?1 a'.
A good exercise for the reader consists in understanding what these commands do. The
appendix A should help you !



Chapter 5

Expressions, parsing and pretty
printing.

This chapter describes the syntax of PhoX. It is possible to use PhoX without a precise
knowledge of the syntax, but for the best use, it is better to read this chapter ... But as any
formal definition of a complex syntax, this is hard to read. Therefore, if it is the first time
you read BNF-like syntactic rules, you will have problem to understand this chapter.

The layout of this chapter is inspired by the documentation of Caml-light (by Xavier
Leroy).

5.1 Notations.

We will use BNF-like notation (the standard notation for grammar) with the following con-
vention:

• Typewriter font for terminal symbols (like this). Sequences of terminal symbols are
the only thing PhoX reads (by definition). We use range of characters to simplify when
needed (like 0...9 for 0123456789).

• Italic for non-terminal symbols (like that). Non-terminal symbols are meta-variables
describing a set of sequences of terminal symbols. All non-terminal symbols we use are
defined in this section (a := denotes such a definition)

• Square brackets [...] denotes optional components, curly brackets {...} denotes the
repetition zero, one or more times of a component, curly brackets with a plus {...}+
denotes repetition one or more times of a component and vertical bar denotes ... | ...
alternate choices. Parentheses are used for grouping.

• Warning: sometimes, the syntax uses terminal symbol, like square brackets, which we
use also with a scpecial meaning to describe the grammar. It is not easy to distinguish
for instance the typewriter square brackets ([]) and the normal version ([]). When
needed, we will clarify this by a remark.

21
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5.2 Lexical analysis.

Blanks

The following characters are blank: space, newline, horizontal tabulation, line feed and form
feed. These blanks are ignored, but they will separate adjacent tokens (like identifier, numbers,
etc, described bellow) that could be confused as one single token.

Comments

Comments are started by (* and ended by *). Nested comments are handled properly. All
comments are ignored (except in some special case used for TeX generation, see the chapter
9) but like blank they separate adjacent tokens.

String, numbers, ...

Strings and characters can use the following escape sequences :

Sequence Character denoted
\n newline (LF)
\r return (CR)
\t tabulation (TAB)
\ddd The character of code ddd in decimal
\c The character c when c is not in 0...9nbt

string-character := any character but " or an escape sequence.
string := " {string-character} "
char-character := any character but ' or an escape sequence.
char := ' char-character '
natural := { 0...9 }+
integer := [-] natural
float := integer [. natural] [(e | E) integer]

Identifiers

Identifiers are used to give names to mathematical objects. The definition is more complex
than for most programming languages. This is because we want to have the maximum freedom
to get readable files. So for instance the following are valid identifiers: A_1', <=, <_A.
Moreover, in relation with the module system, identifiers can be prefixed with extension like
in add.assoc or prod.assoc.
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letter := A...Z | a...z
end-ident := {letter | 0...9 | _ } { ' }
atom-alpha-ident := letter end-ident
alpha-ident := atom-alpha-ident { . atom-alpha-ident}
special-char := ! | % | & | * | + | , | - | / | : | ; | < | = | > |

@ | [ | ] | \ | # | ^ | ` | \ | | | { | } | ~ |
Most unicode math symbols

atom-special-ident := {special-char}+ [_ end-ident]
special-ident := atom-special-ident { . atom-alpha-ident }
any-ident := alpha-ident | special-ident
pattern := any-ident | (_ {. atom-alpha-ident })
unif-var := ? {natural}
sort-var := ' {letter}+

Exemples:

• N, add.commutative.N, x0, x0', x_1 are alpha-idents.

• <, <<, <_1, +, +_N are special-idents.

• ?1 is a unif-var.

• 'a is a sort-var.

• +, _.N are patterns (used only for renaming symbol with the module system).

Special characters

The following characters are token by themselves:

( | ) | . | $

5.3 Sorts
sorts-list := sort

| sort , sorts-list
sort := sort-var

| sort -> sort
| ( sort )
| alpha-ident
| alpha-ident [ sorts-list ]

Examples: prop -> prop, ('a -> 'b) -> list['a] -> list['b] are valid sorts.

5.4 Syntax
The parsing and pretty printing of expressions are incremental. Thus we will now show the
syntax the user can use to specify the syntax of new PhoX symbols.
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ass-ident := alpha-ident [:: sort]
syntax-arg := string | ass-ident | (\ alpha-ident \)
syntax := alpha-ident {ass-ident}

| Prefix [ [ float ] ] string {syntax-arg}
| Infix [ [float] ] ass-ident string {syntax-arg}
| rInfix [ [float] ] ass-ident string {syntax-arg}
| lInfix [ [float] ] ass-ident string {syntax-arg}
| Postfix| [ [float] ] ass-ident

Moreover, in the rule for syntax a ass-ident can not be immediately followed by another
ass-ident or a (\ alpha-ident \) because this would lead to ambiguities. Moreover, in the same
rule, the string must contain a valid identifier (alpha-ident or special-ident). These constraints
are not for LaTeX syntax.

5.5 Expressions
Expressions are not parsed with a context free grammar ! So we will give partial BNF rules
and explain “infix” and “prefix” expressions by hand.

Here are the BNF rules with infix-expr and prefix-expr left undefined.

sort-assignment := :< sort
alpha-idents-list := alpha-ident

| alpha-ident , alpha-idents-list
atom-expr := alpha-ident

| $ any-ident
| unif-var
| \ alpha-idents-list sort-assignment atom-expr
| ( expr )
| prefix-expr

app-expr := atom-expr
| atom-expr app-expr

expr := app-expr
| prefix-expr
| infix-expr

This definition is clear except for two points:

• The juxtaposition of expression if the definition of app-expr means function application
!

• The keyword \ introduces abstraction: \x x for instance, is the identity function.
\x (x x) is a strange function taking one argument and applying it to itself. In fact
this second expression is syntaxically valid, but it will be rejected by PhoX because it
does not admit a sort.

To explain how infix-expr and prefix-expr works, we first give the following definition:
A syntax definition is a list of items and a priority. The priority is a floating point number

between 0 and 10. Each item in the list is either:
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• An alpha-ident. These items are name for sub-expressions.

• A string containing an any-ident, using escape sequences if necessary. These kind of
items are keywords.

• A token of the form \ alpha-ident \ where the alpha-ident is used somewhere else in the
list as a sub-expression. These items are “binders”.

• The list should obey the following restrictions (except for LaTeX syntax definition):

– The first of the second item in the list should be a keyword. If the first item is a
keyword, then the syntax definition is “prefix” otherwise it is “infix”.

– A name for a sub-expression can not be followed by another name for a sub-
expression nor a binder.

Remark: this definition clearly follows the definition of a syntax.
Now we can explain how a syntax definition is parsed using the following principles. It is

not very easy to understand, so we will give some examples:

1. The first keyword in the definition is the “name” of the object described by this syntax.
This name can be used directly with “normal” syntax prefixed by a $ sign.
For instance, if the first keyword is the string "+", then + is the name of the object and
if this object is defined, $+ is a valid expression.

2. To define the way infix-expr and prefix-expr are parsed, we will explain how they are
parsed and give the same expression without using this special syntax.

3. The number of sub-expressions in the list is the “arity” of the object defined by the
syntax.

4. To parse a syntax defined by a list, PhoX examines each item in the list:

• If it is the 𝑖th sub-expression in the list, then PhoX parses an expression and this
expression is the 𝑖th argument 𝑎𝑖 of the object. At the end, if no binder is used,
parsing an object whose name is N will be equivalent to parsing $N 𝑎1 …𝑎𝑛.

• If it is a keyword, then PhoX parses exactly that keyword.
• If it is a binder \x\, where x is the name of the 𝑖th sub-expression, then the

variable x may appear in the 𝑖th, and this 𝑖th will be prefixed with \x. At the end,
parsing an object whose name is N will be equivalent to parsing N (\𝑥1, … , 𝑥𝑛 𝑎1)
…(\𝑦1, … , 𝑦𝑝 𝑎𝑛).

• If the first and last item in the syntax definition are sub-expressions, the priority
are important: PhoX parses expression at a given priority level, initially 10. If the
priority of the syntax definition is strictly greater than the priority level, then this
syntax definition can not be parsed.
When parsing the first item, if it is a sub-expression, the priority level is changed
to the priority level of the syntax definition (minus 𝜖 = 1𝑒−10 if the symbol is not
left associative). Left associative symbols are defined using the keyword lInfix of
Postfix.
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When parsing the last item, if it is a sub-expression, the priority level is changed
to the priority level of the syntax definition (minus 𝜖 = 1𝑒−10 if the symbol is not
right associative. Right associative symbols are defined using the keyword rInfix
of Prefix.
When parsing other items, the priority is set to 10.

Examples:

• The syntax lInfix[3] x "+" y is parsed by parsing a first expression 𝑎1 at priority 3,
then parsing the keyword + and finally, parsing a second expression 𝑎2 at priority 3 − 𝜖.
Therefore, parsing 𝑎1 + 𝑎2 is equivalent to $+ 𝑎1𝑎2 and parsing 𝑎1 + 𝑎2 + 𝑎3 is equivalent
to $+ ($+ 𝑎1𝑎2) 𝑎3.

• The syntax Prefix "{" \P\ "in" y "|" P "}" is parsed by parsing the keyword {,
an identifier 𝑥, the keyword ”in”, a fist expression 𝑎1, the keyword |, a second expression
𝑎2 that can use the variable 𝑥 and the keyword }.
Therefore, parsing { 𝑥 in 𝑎1 | 𝑎2 } is equivalent to ${ 𝑎1 \x 𝑎2.

• Other examples can be found in the appendix A in the description of the commands
Cst and def

Remark: there are some undocumented black magic in PhoXparser. For instance, to
parse ∀𝑥, 𝑦 ∶ 𝑁 … (meaning ∀𝑥(𝑁𝑥 → ∀𝑦(𝑁𝑦 → … )) or ∀𝑥, 𝑦 < 𝑧 … (meaning ∀𝑥(𝑥 < 𝑧 →
∀𝑦(𝑦 < 𝑧 → … )), there is an obscure extension for binders.

This is really specialized code for universal and existential quantifications ... but ad-
vanturous user, looking at the definition of the existential quantifier \/ in the library file
prop.phx can try to understand it (though, I think it is not possible).

5.6 Commands
An extensive list of commands can be found in the index A using the same syntax and
conventions.
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Natural Commands

PhoX’s natural commands are conceived as an intermediate language for a forthcoming nat-
ural language interface. But, they are also directly usable with the following advantages and
disadvantages compared with the usual tactics:

advantages Proof are readable and more robust (when you modify something in your theo-
rems, less work is necessary to adapt your proofs).

disadvantages The automatic reasoning of PhoX is pushed to the limit and in the current
implementation it may be hard to do complex proofs with natural commands. You can
greatly help the system by using the rmh or slh commands to select the hypotheses.

Remark: some of the feature described here are signaled as not yet implemented.

6.1 Examples
Here are two examples:

def injective f = /\x,y (f x = f y -> x = y).

prop exo1
/\h,g (injective h & injective g & /\x (h x = x or g x = x)

-> /\x (h (g x)) = (g (h x))).

let h, g assume injective h [H] and injective g [G]
and /\x (h x = x or g x = x) [C]

let x show h (g x) = g (h x).
by C with x assume h x = x then assume g x = x.
(* cas h x = x *)

by C with g x assume h (g x) = g x trivial
then assume g (g x) = g x [Eq].

by G with Eq deduce g x = x trivial.
(* cas g x = x *)

by C with h x assume g (h x) = h x trivial
then assume h (h x) = h x [Eq].

27
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by H with Eq deduce h x = x trivial.
save.

def inverse f A = \x (A (f x)).

def ouvert O = /\ x (O x -> \/a > R0 /\y (d x y < a -> O y)).

def continue1 f = /\ x /\e > R0 \/a > R0
/\ y (d x y < a -> d (f x) (f y) < e).

def continue2 f = /\ U ((ouvert U) -> (ouvert (inverse f U))).

goal /\f (continue1 f -> continue2 f).
let f assume continue1 f [F]

let U assume ouvert U [O] show ouvert (inverse f U).
let x assume U (f x) [I] show \/b > R0 /\x' (d x x' < b -> U (f x')).
by O with f x let a assume a > R0 [i] and /\y (d (f x) y < a -> U y) [ii].
by F with x and i let b assume b > R0 [iii] and /\ x' (d x x' < b -> d (f x) (f x') < a) [iv].
let x' assume d x x' < b [v] show U (f x').
by ii with f x' show d (f x) (f x') < a.
by iv with v trivial.
save th1.

6.2 The syntax of the command

The command follow the following grammar:

cmd ∶= let idlist cmd ∣
assume expr naming {and expr naming} cmd ∣
deduce expr naming {and expr naming} cmd ∣
by alpha-ident {with with-args} cmd ∣
show expr cmd ∣
trivial ∣
∅ ∣ not allowed after by
cmd then cmd ∣
begin cmd end ∣

idlist ∶= alpha-ident {, alpha-ident }{∶ expr ∣ infix-symbol expr} ∣
alpha-ident = expr ∣ not implemented
idlist and idlist

naming ∶= named alpha-ident ∣ [alpha-ident ]
with-args ∶= see the documentation of the elim and apply commands in the appendix

Note: In the current implementation, only trivial is allowed after show. Naming using
square brackets wont work if the opening square bracket is defined as a prefix symbol.
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6.3 Semantics
Definition 6.1 A natural command is simple if show is followed by the empty command.

A simple command in a goal is interpreted as a rule that needs to be proved derivable
automatically by PhoX. A natural command can be seen as a tree of simple command and is
therefore interpreted as a tree of derivable rule, that is a derivable rule itself.

We will just describe the interpretation of a simple command: let us assume the current
goal is Γ ⊢ 𝐴 then a simple command is interpreted as a rule whose conclusion is Γ ⊢ 𝐴 and
whose premises are defined by induction on the structure of the command. Thus, we only
need to prove the premises to prove the current goal.

First some syntactic sugar can be elliminated:

• let 𝐼 and 𝐼′ is interpreted as let 𝐼 let 𝐼′

• let 𝑥1, … , 𝑥𝑛⋆𝑃 (where ⋆ is ∶ or an infix symbol is interpreted as let 𝑥1⋆𝑃 … let 𝑥𝑛⋆
𝑃

• let 𝑥 ∶ 𝑃 is interpreted as let 𝑥 assume 𝑃𝑥

• let 𝑥 ⋆ 𝑃 is interpreted as let 𝑥 assume 𝑥 ⋆ 𝑃 where ⋆ is an infix symbol.

• The keyword deduce is interpreted as assume.

• assume 𝐴1 and … and 𝐴𝑛 is interpreted as assume 𝐴1 assume … assume 𝐴𝑛

Then the set of premises |𝐶| associated to the simple command 𝐶 if the current goal is
Γ ⊢ 𝐴 is defined by

|let 𝑥 𝐶| = |𝐶| the variable 𝑥 may be used in |𝐶|
|assume 𝐸 named 𝐻 𝐶| = {𝐻 ∶= 𝐸, Γ1 ⊢ 𝐵1, … , 𝐻 ∶= 𝐸, Γ𝑛 ⊢ 𝐵𝑛}

if |𝐶| = {Γ1 ⊢ 𝐵1, … , Γ𝑛 ⊢ 𝐵𝑛} if 𝐻 is not given, it is chosen
by PhoX

by 𝐻 with … 𝐶 = |𝐶| the indication in by are used as hints by the automated
when using 𝐻.

|show 𝐸| = {Γ ⊢ 𝐸}
|∅| = {Γ ⊢ 𝐴}
|𝐶then 𝐶′| = |𝐶| ∪ |𝐶′|
|begin 𝐶end | = |𝐶|
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Chapter 7

The module system

This chapter describes the PhoX module system. Its purpose is to allow reusing of theory.
For instance you can define the notion of groups and prove some of their properties. Then,
you can define fields and reuse your group module twice (for multiplication and addition).

7.1 Basic principles
Our module system strongly uses the notion of names. Any objects (theorems, terms, ...) has
a distinct name. Therefore, if you want to merge two PhoX modules which both declare an
object with the same name, this two objects must coincide after merging.

Here are the conditions under which two objects can coincide:

• They must have the same sorts. A formula can not coincide with a natural number.

• If both objects are defined expressions, their definitions must be structurally equal.

• If both objects are theorems or axioms, they must have structurally equal conclusions.
They do not need to have the same proof.

If one of this condition is not respected, the loading of modules will fail.
These rules allow you to make coincide an axiom with a theorem and a constant with a

definition. This is why we can prove axiomatic properties of a structure like groups by adding
some constants and axioms and then use this module on a particular group where the axioms
may be proven and the constants may already exists.

7.2 Compiling and importing
When you have written a PhoX file foo.phx, you can compile it using the command:

phox -c foo.phx

This compilation generates two files foo.phi and foo.pho and possibly one or more
LaTeX file (see the chapter 9).

The file foo.pho is a core image of PhoX just after the compilation. You can use it
to restart PhoX in a state equivalent to the state it had after reading the last line of the
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file foo.phx. This is useful when developing to avoid executing each line in the file before
continuing it.

The file foo.phi is used when you want to reuse the theory developed in the file foo.phx.
To do so you can use the command:

Import foo.

This command includes all the objects declared in the file foo.phx. The above rules are
used to resolve name conflicts.

7.3 Renaming and using
The command Import is not sufficient. Indeed, if one wants to use twice the same module, it
is necessary to rename the different objects it can contains to have distinct copies of them.

To do this, you can use the command Use (see the index of commands for its complete
syntax and the definition of renaming). The different possibilities of renaming, and a careful
choice of names allow you to transform easily the names declared in the module you want to
use.

When you use a module, you sometimes know that you are not extending the theory. For
instance, if you prove that a structure satisfies all the group axioms, you can load the group
module to use all the theorems about groups and you are not extending the theory. The -n
option of the Use command checks that it is the case and an error will result if you extend
the theory.

Important note: there is an important difference between Use and Import other than the
possibility of renaming with Use. When you apply a renaming to a module foo this renaming
does not apply to the module imported by foo (with Import) but it applies to the module
used by foo (with Use). This allows you to import modules like natural numbers when
developing other theories with a default behaviour which is not to rename objects from the
natural numbers theory when your module is used. You can override this default behaviour
(see the index of commands), but it is very seldom useful.

7.4 Exported or not exported?
By default, anything from a PhoX file is exported and therefore available to any file importing
or using it (except the flags values!). However, you can make some theorems of rules local
using the Local prefix (see the index of commands).

However, constants and axioms are always exported, and a definition appearing in an
exported definition or theorem is always exported. So it is only useful to declare local some
rules (created using new_intro, new_elim or new_equation), LaTeX syntaxes (created using
tex_syntax), lemmas or definitions only appearing in local lemmas.

7.5 Multiple modules in one file
Warning: this mode can not be used with XEmacs interface and in general in interactive
mode ! To use it, develop the last module in interactive mode as one file and add it at the
end of the main file when it works.
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This feature will probably disappear soon ....
It is sometimes necessary to develop many small modules. It is possible in this case to

group the definitions in the same file using the following syntax:

Module name1.
...
...

end.

Module name2.
...
...

end.

...

If the file containing these modules is named foo this is equivalent to having many files
foo.name1.phx, foo.name2.phx, …containing the definitions in each module. Therefore the
name of each module (to be used with Import or Use) will be foo.name1, foo.name2, ….

Moreover, a module can use the previously defined modules in the same file using only
the name of the module (omitting the file name).

Here is an example where we define semi-groups and homomorphisms.

Module semigroup.
Sort g.
Cst G : g -> prop.
Cst rInfix[3] x "op" y : g -> g -> g.

claim op_total /\x,y:G G (x op y).
new_intro -t total op_total.

claim assoc /\x,y,z:G x op (y op z) = (x op y) op z.
new_equation -b assoc.

end.

Module homomorphism.

Use semigroup with
_ -> _.D

.

Use semigroup with
_ -> _.I

.

Cst f : g -> g.
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claim totality.f /\x:G.D G.I (f x).
new_intro -t f totality.f.

claim compatibility.f /\x1,x2:G.D f (x1 op.D x2) = f x1 op.I f x2.
new_equation compatibility.f.

end.



Chapter 8

Inductive predicates and
data-types.

This chapter describes how you can construct predicate and data-types inductively. This
correspond traditionnally to the definition of a set as the smallest set such that ...

This kind of definitions are not to difficult to write by hand, but they are not very readable
and moreover, you need to prove many lemmas before using them. PhoXwill generate and
prove automatically these lemmas (most of the time)

8.1 Inductive predicates.
We will first start with some examples:

Use nat.

Inductive Less x y =
zero : /\x Less N0 x

| succ : /\x,y (Less x y -> Less (S x) (S y))
.

Inductive Less2 x y =
zero : Less2 x x

| succ : /\y (Less2 x y -> Less2 x (S y))
.

This example shows two possible definitions for the predicate less or equal on natural
numbers.

The name of the predicates will be Less and Less2 and they take both two arguments.
They are the smallest predicates verifying the given properties. The identifier zero and succ
are just given to generate good names for the produced lemmas.

These lemmas, generated and proved by PhoX, are:

zero.Less = /\x Less N0 x : theorem
succ.Less = /\x,y (Less x y -> Less (S x) (S y)) : theorem
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Which are both added as introduction rules for that predicate with zero and succ as
abbreviation (this means you can type intro zero or intro succ to specify which rule to
use when PhoXguesses wrong).

rec.Less =
/\X/\x,y
(/\x0 X N0 x0 ->
/\x0,y0 (Less x0 y0 -> X x0 y0 -> X (S x0) (S y0)) ->
Less x y -> X x y) : theorem

case.Less =
/\X/\x,y
((x = N0 -> X N0 y) ->
/\x0,y0 (Less x0 y0 -> x = S x0 -> y = S y0 -> X (S x0) (S y0)) ->
Less x y -> X x y) : theorem

The first one: rec.less is an induction principle (not very useful ?). It is added as an
elimination rule. The second one is to reason by cases. It is added as an invertible left rule:
If you want to prove P x y with an hypothesis H := Less x y, the command left H will
ask you to prove P N0 y with the hypothesis x = N0 (there may be other occurrences of x
left) and P (S x0) (S y0) with three hypothesis: Less x0 y0, x = S x0 and y = S y0.

The general syntax is:

Inductive syntax [ -ce ] [ -cc ] =
alpha-ident [ -ci ] : expr
{ | alpha-ident [ -ci ] : expr }

You will remark that you can give a special syntax to your predicate. The option -ce
means to claim the elimination rule. The option -cc means to claim the case reasonning.
The option -ci means to claim the introduction rule specific to that property.

8.2 Inductive data-types.
The definition of inductive data-types is similar. Let us start with an example:

Data List A =
nil : List A nil

| cons x l : A x -> List A l -> List A (cons x l)
.

This example will generate a sort list with one parameter. It will create two constants
nil : list['a] and cons : 'a -> list['a] -> list['a].

It will also claim the axiom that these constants are distinct and injective.
Then it will proceed in the same manner as the following inductive definition to define

the predicate List and the corresponding lemmas:

Inductive List A l =
nil : List A nil

| cons : /\x,l (A x -> List A l -> List A (cons x l))
.
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There is also a syntax more similar to ML:

type List A =
nil List A nil

| cons of A and List A
.

The general syntax is (Data can be replaced by type):

constr-def ∶=
alpha-ident {ass-ident} |
[ alpha-ident ] syntax

Data syntax [ -ce ] [ -cc ] [ -nd ] [ -ty ] =
constr-def [ -ci ] [ -ni ] : expr |
{ | constr-def [ -ci ] [ -ni ] : expr } { | constr-def [ -ci ] [ -ni ] of expr [ and expr …]

We can remark three new options: -nd to tell PhoX not to generate the axioms claiming
that all the constructors are distinct, -ty to tell PhoX to generate typed axioms (for instance
/\x:N (N0 != S x) instead of /\x (N0 != S x)) and -ni to tell PhoX not to generate the
axiom claiming that a specific constructor is injective.

One can also remark that we can give a special syntax to the constructor, but one still
need to give an alphanumeric identifier (between square bracket) to generate the name of the
theorems.

Here is an example with a special syntax:

Data List A =
nil : List A nil

| [cons] rInfix[3.0] x "::" l : A x -> List A l -> List A (x::l)
.
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Chapter 9

Generation of LaTeX documents.

When compiling a PhoX file (using the phox -c command) you can generate one or more
LaTeX documents. This generation is NOT automatic. But PhoX can produce a LaTeX
version of any formula available in the current context. This means that when you want
to present your proof informally, you can insert easily the current goal or hypothesis in
your document. In practice you almost never need to write mathematical formulas in LaTeX
yourself. When a formula does not fit on one line, you can tell PhoX to break it automatically
for you (this will require two compilations in LaTeX and the use of a small external tool pretty
to decide where to break).

You can also specify the LaTeX syntax of any PhoX constant or definition so that they
look like you wish. In fact using all these possibilities, you can completely hide the fact that
your paper comes from a machine assisted proof !

The LaTeX file produced by PhoX can be used as stand-alone articles or inserted in a
bigger document (which can be partially written in pure LaTeX).

In this chapter, we assume that the reader as a basic knowledge of LaTeX.

9.1 The LaTeX header.
If you want PhoX to produce one or more LaTeX documents, you need to add a LaTeX
header at the beginning of your file (only one header should be used in a file even in a
multiple modules file). A LaTeX header look like this:

tex
title = "A Short proof of Fermat's last Theorem"
author = "Donald Duck"
institute = "University of Dingo-city"
documents = math slides.

The three first fields are self explanatory and the strings can contain any valid LaTeX
text which can be used as argument of the \title of \author commands.

The last field is a list of documents that PhoX will produce. In this case, if this header
appears in a file fermat.phx, the command phox -c fermat.phx will produce two files named
fermat.math.tex and fermat.slides.tex.

The document names math and slides will be used later in LaTeX comments.
Warning: do not forget the dot at the end of the header.
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9.2 LaTeX comments.

A LaTeX comment is started by (*! doc1 doc2 ... (on the same line) and ended by *). As
far as building the proof is concerned, these comments are ignored. doc1, doc2, ... must be
among the document names declared in the header. Thus, when compiling a PhoX file, the
content of these comments are directly outputed to the corresponding LaTeX files (except for
the formulas as we will see in the next section).

9.3 Producing formulas

To output a formula (which fits on one line), you use \[ ... \] or \{ ... \}. The first
form will print the formula in a mathematical version (like ∀𝑋(𝑋 → 𝑋)). The second will
produce a verbatim version, using the PhoX syntax (like /\X (X -> X)). The second form
is useful when producing a documentation for a PhoX library, when you have to teach your
reader the PhoX syntax you use.

Formulas produced by \[ ... \] may be broken by TeX using its usual breaking scheme.
Formula produced by \{ ... \} will never be broken (because LaTeX do not insert break
inside a box produced by \verb). We will see later how to produce larger formulas.

LaTeX formulas can use extra goodies:

• They can contain free variables.

• If A is a defined symbol in PhoX , $$A will refer to the definition of A (If this definition
is applied to arguments, the result will be normalised before printing). Remember that
a single dollar must be used when 𝐴 as a special syntax and you want just to refer to 𝐴
(For instance you use $+ to refer to the addition symbol when it is not applied to two
arguments).

• All the hypothesis of the current goal are treated like any defined symbol.

• $0 refers to the conclusion of the current goal.

• You can use the form \[n or \{n where n is an integer to access the conclusion and the
hypothesis of the nth goal to prove (instead of the current goal).

• You can use the following flags (see the index B for a more detailed description) to con-
trol how formulas will look like: binder_tex_space, comma_tex_space, min_tex_space,
max_tex_space, tex_indent,
tex_lisp_app, tex_type_sugar, tex_margin, tex_max_indent

A \[ ... \] or \{ ... \} can be used both in text mode and in math mode. If you are
in text mode, \[ ... \] is equivalent to $\[ ... \]$ (idem with curly braces).

WARNING: the closing of a formula: \], \} should not be immediately followed by a
character such that this closing plus this character is a valid identifier for PhoX. Good
practice is always to follow it by a white space. This is a very common error!
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9.4 Multi-line formulas
You can produce formulas fitting on more than one line using \[[ ... \]] or \{{ ... \}}.

The second form produces verbatim formulas similar to those produced by the PhoX
pretty printer (with the same breaking scheme) like:

lesseq.rec2.N
= /\X

/\x,y:N
(X x -> /\z:N (x <= z -> z < y -> X z -> X (S z)) ->

x <= y -> X y)
: Theorem

The first form produces multi-line formulas using the same mathematical syntax than
\[ ... \] like:

∀X ∀x,y∶IN
(X x → ∀z∶IN (x ≤ z → z < y → X z → X (S z)) →

x ≤ y → X y )

However, breaking formulas in not an easy task. When you compile with LaTeX a file
test.tex produced from an PhoX file using \[[ ... \]], a file test.pout is produced.
Then using the command pretty test (do not forget to remove the extension in the file
name), a file test.pin is produced which tells LaTeX where to break lines. Then you can
compile one more time your LaTeX file. It may be necessary to do all this one more time to
be sure to reach a fix-point.

The formula produced in this way will use no more space than specified by the LaTeX
variable \textwidth. Therefore, you can change this variable if you want formulas using a
given width.

9.5 User defined LaTeX syntax.
You can specify yourself the syntax to be used in the math version of a formula. To do so
you can use the tex_syntax. This command can have three form:

tex_syntax symbol "name" : tells PhoX to use this name for this symbol. name should be a
valid LaTeX expression in text mode and will be included inside an hbox in math mode.
This form should be used to give names to theorems, lemmas and functions which are
to be printed just as a name (like sin or cos).

tex_syntax symbol Math "name" : tells PhoX to use this name for this symbol. name
should be a valid LaTeX expression in math mode and will be included directly in math
mode.

tex_syntax symbol syntax : tell PhoX to use the given syntax for this symbol. The syntax
uses the same convention as for the command def of cst. When the symbol is used
without its syntax (using $symbol) the first keyword if the syntax is Prefix or the
second otherwise will be used. Moreover, you can separate tokens with the following
spacing information (to change the default spacing):
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! suppresses all space and disallow breaking (in multi-line formulas).
<n> (where n is an integer) uses n 100th of em for spacing and disallows breaking (in

multi-line formulas).
<n i> (where n and i are integers) uses n 100th of em for spacing and allows breaking

(in multi-line formulas) using i 100th of em of extra indentation space.

9.6 examples.
cst 2 rInfix[4] x "|->" y.
tex_syntax $|-> rInfix[4] x "\\hookrightarrow" y.

Will imply the \[ A |-> B \] gives 𝐴 ↪ 𝐵 in your LaTeX document. You should note that
you have to double the \ in strings.

Cst Prefix[1.5] "Sum" E "for" \E\ "=" a "to" b
: (Term -> Term) -> Term -> Term -> Term.

tex_syntax $Sum Prefix[1.5]
"\\Sigma" "_{" ! \E\ "=" a ! "}^{" ! b ! "}" E %as $Sum E a b.

Will imply that \[Sum f i for i = n to p\] gives Σ𝑝
𝑖=𝑛𝑓𝑖 in your LaTeX document. We

have separated the "\\Sigma" from the "_{" so that "\[$Sum\]" just produces a single Σ
and we used "%as" to modify the order of the arguments (because E comes last in the LaTeX
syntax and first in the PhoX syntax).

More complete examples can be found by looking at the libraries and examples distributed
with PhoX.
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Installation.

You can read up-to-date instructions at the following url :

http://www.lama.univ-savoie.fr/~raffalli/phox.html

We will explain how to install PhoX on a Unix machine. If you are familiar with Objective-
Caml, it should not be difficult to get it work on any machine which can run Objective-Caml.

To install the “PhoX Proof Checker”, proceed as follow:

1. Get and install Objective-Caml version 3.0* (at least 3.08). You can get it by ftp:

site = ftp.inria.fr
dir = lang/caml-light
file = ocaml-3.0*.tar.gz

2. Get the latest version of PhoX by ftp :

site = www.lama.univ-savoie.fr
or
site = ftp.logique.jussieu.fr
dir = pub/distrib/phox/current/
file = phox-0.xxbx.tar.gz

3. Uncompress it and detar it (using gunzip phox-0.xxbx.tar.gz; tar xvf phox-0.xxbx.tar)

4. Move to the directory phox-0.xxbx which has just been created.

5. Edit the file ”./config”, to suit you need.

6. Type ”make”.

7. Type ”make install”

8. If you want the program to look for its libraries in more than one directory, you can set
the PHOXPATH variable, for instance like this (with csh):

setenv PHOXPATH /usr/local/lib/phox/lib:$USERS/phox/examples
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9. You are strongly encouraged to use the emacs interface to PhoX. To install an emacs-
mode, use Proof-General (release 3.3 or greatest) from:

http://www.proofgeneral.org/~proofgen

Proof-General works better with xemacs, but pre-releases 3.4 works reasonably well
with gnu-emacs 21.



Appendix A

Commands.

In this index we describe all the PhoX commands. The index is divided in two sections: the
top-level commands (always accepted) and the proof commands (accepted only when doing
a proof).

A.1 Top-level commands.
In what follows curly braces denote an optional argument. You should note type them.

A.1.1 Control commands.
goal formula. Start a proof of the given formula. See the next section about proof com-

mands.

>phox> def fermat =
/\x,y,z,n:N ((x^n + y^n = z^n) -> n <= S S O).

/\ x,y,z,n : N (x ^ n + y ^ n = z ^ n -> n <= S S O) : Form
>phox> goal fermat.
.....

.....
>phox> proved

prove_claim name :
Start the proof of an axiom previously introduced by then claim command. It is very
useful with the module system to prove claims introduced by a module.

quit. :
Exit the program.

>phox> quit.
Bye
%
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restart. :
Restart the program, does not stop it, process is stil the same.

{Local} theorem name {"tex_name"} expression Identical to goal except you give the
name of the theorem and optionally its TeX syntax (this TeX Syntax is used as in
tex_syntax name "tex_name"). Therefore, you do not have to give a name when you
use the save command.
Instead of theorem, you can use the following names: prop | proposition | lem |
lemma| fact | cor | corollary | theo.
You can give the instruction Local to indicate that this theorem should not be exported.
This means that if you use the Import or Use command, only the exported theorem
will be added.

A.1.2 Commands modifying the theory.
claim name {"tex_name"} formula. Add the formula to the data-base as a theorem (claim)

under the given name.
You can give an optional TeX syntax (this TeX Syntax is used as in tex_syntax name
"tex_name").

Cst syntax : sort. Defines a constant of any sort.

>phox> Cst map : (nat -> nat) -> nat -> nat.
Constant added.

Default syntax is prefix. You can give a prefix, postfix or infix syntax for instance the
following declarations allow the usual syntaxes for order 𝑥 < 𝑦 and factorial 𝑛! :

Cst Infix x "<" y : nat -> nat -> prop.
$< : d -> d -> prop
Cst Postfix[1.5] x "!" : nat -> nat.
$! : d -> d

To avoid too many parenthesis, you can also give a priority (a floating number) and, in
case of infix notation, you can precise if the symbol associates to the right (rInfix) or
to the left (lInfix).
For instance the following declarations1

Cst Prefix[2] "S" x : nat -> nat.
Cst rInfix[3.5] x "+" y : nat -> nat -> nat.
Cst lInfix[3.5] x "-" y : nat -> nat -> nat.
Cst Infix[5] x "<" y : nat -> nat -> prop.

gives the following :
1these declarations are no more exactly the ones used in the PhoX library for integers.
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• S x + y means (S x) + y (parenthesis around the expression with principal
symbol of smaller weight) ;

• x - y < x + y means (x - y) < (x + y) (same reason) ;
• x + y + z means x + (y + z) (right symbol first) ;
• x - y - z means (x - y) - z (left symbol first).

More : the two symbols have the same priority and then x - y + z is not a valid
expression.
Arbitrary priorities are possible but can give a mess. You have ad least to follows these
conventions (used in the libraries) :

• connectives : priority > 5 ;
• predicates : priority = 5 ;
• functions : priority < 5.

You can even define more complex syntaxes, for instance :

Cst Infix[4.5] x "==" y "mod" p : nat -> nat -> nat-> nat.
(* $== : nat -> nat -> nat -> nat *)
print \a,b(a + b == a mod b).
(* \a,b (a + b == a mod b) : nat -> nat -> nat *)

you can define syntax for binders :

Cst Prefix[4.9] "{" \P\ "in" a "/" P "}"
: 'a -> ('a -> prop) -> prop.
(* ${ : 'a -> ('a -> prop) -> prop *)
print \a \P{ x in a / P}.
(* \a,P {x in a / P } : ?a -> prop -> prop *)

{Local} def syntax = expression. Defines an abbreviation using a given syntax for an
expression.
The prefix Local tells that this definition should not be exported. This means that if
you use the Import or Use command, only the exported definitions will be added.
Here are some examples :

>phox> def rInfix[7] X "&" Y = /\K ((X -> Y -> K) -> K).
(\X (\Y /\ K ((X -> Y -> K) -> K))) : Form -> Form -> Form
>phox> def rInfix[8] X "or" Y =
/\K ((X -> K) -> (Y -> K) -> K).

(\X (\Y /\ K ((X -> K) -> (Y -> K) -> K))) :
Form -> Form -> Form

>phox> def Infix [8.5] X "<->" Y = (X -> Y) & (Y -> X).
(\X (\Y (X -> Y) & (Y -> X))) : Form -> Form -> Form
>phox> def Prefix[5] "mu" \A\ \A\ A "<" t ">" =
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/\X (/\x (A X x -> X x) -> X t).
(\A (\t /\ X (/\ x (A X x -> X x) -> X t))) :
((Term -> Form) -> Term -> Form) -> Term -> Form

Defintion of the syntax follows the same rules and conventions as for the command Cst
above.

{Local} def_thlist name = th1 …thn. Defines name to be the list of theorems th1 …thn.
For the moment list of theorems are useful only with commands rewrite and rewrite_hyp.

>phox> def_thlist demorgan =
negation.demorgan disjunction.demorgan
forall.demorgan arrow.demorgan
exists.demorgan conjunction.demorgan.

del symbol. Delete the given symbol from the data-base. All definitions, theorems and rules
using this symbol are deleted too.

>phox> del lesseq1.
delete lesseq_refl
delete inf_total from ##totality_axioms
delete inf_total
delete sup_total from ##totality_axioms
delete sup_total
delete less_total from ##totality_axioms
delete less_total
delete lesseq_total from ##totality_axioms
delete lesseq_total
delete lesseq1 from ##rewrite_rules
delete lesseq1

del_proof name. Delete the proof of the given theorem (the theorem becomes a claim).
Useful mainly to undo the prove_claim command.

Sort {['a,'b, …]} {= sort}. Adds a new sort. The sort may have parameters or may be
defined from another sort.

>phox> Sort real.
Sort real defined
>phox> Sort tree['a].
Sort tree defined
>phox> Sort bool = prop.
Sort bool defined
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A.1.3 Commands modifying proof commands.
These commands modify behaviour of the proof commands described in appendix A.2. For
instance the commands new_intro, new_elim and new_equation by adding new rules, modify
behaviour of the corresponding proof commands intro, elim, rewrite and commands that
derive from its.

In particular they can also modify the behaviour of automatic commands like trivial
and auto. They are useful to make proofs of further theorems easier (but can also make
them harder if not well used). You can find examples in PhoX libraries, where they are
systematically used.

For good understanding recall that the underlying proof system is basically natural de-
duction, even if it is possible to add rules like lefts rules of sequent calculus, see below.

{Local} close_def symbol. When symbol is defined, this “closes” the definition. This
means that the definition can no more be open by usual proof commands unless you
explicitly ask it by using for instance proof commands unfold or unfold_hyp. In par-
ticular unification does not use the definition anymore. This can in some case increase
the efficiency of the unification algorithm and the automatic tactic (or decrease if not
well used). When you have add enough properties and rules about a given symbol with
new_…commands, it can be a good thing to “close” it. Note that the first new_elim
command closes the definition for elimination rules, the first new_intro command closes
the definition for introduction rules. In case these two commands are used, close_def
ends it by closing the definition for unification.
For (bad) implementation reasons the prefix Local is necessary in case it is used for
the definition of the symbol (see def command). If not the definition will not be really
local.

edel extension-list item. Deletes the given item from the extension-list.
Possible extension lists are: rewrite (the list of rewriting rules introduced by the
new_equation command), elim, intro, (the introduction and elimination rules intro-
duced by the new_elim and new_intro {-t} commands), closed (closed definitions
introduced by the close_def command) and tex (introduced by the tex_syntax com-
mand). The items can be names of theorems (new_...), or symbols (close_def and
tex_syntax). Use the eshow command for listing extension lists.

>phox> edel elim All_rec.
delete All_rec from ##elim_ext

See also the del command.

elim_after_intro symbol. Warning: this command will disappear soon.
Tells the trivial tactic to try an elimination using an hypothesis starting with the symbol
constructor only if no introduction rule can be applied on the current goal. (This seems
to be useful only for the negation).

>phox> def Prefix[6.3] "~" X = X -> False.
\X (X -> False) : Form -> Form
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>phox> elim_after_intro $~.
Symbol added to "elim_after_intro" list.

{Local} new_elim {-i} {-n} {-t} symbol name {num} theorem. If the theorem has the
following shape: ∀𝜒1...∀𝜒𝑛(𝐴1 → … → 𝐴𝑛 → 𝐵 → 𝐶) where symbol is the head of 𝐵
(the quantifier can be of any order and intermixed with the implications if you wish).
Then this theorem can be added as an elimination rule for this symbol. 𝐵 is the main
premise, 𝐴1, … , 𝐴𝑛 are the other premises and 𝐶 is the conclusion of the rule.
The name is used as an abbreviation when you want to precise which rule to apply
when using the elim command.
The optional num tells that the principal premise is the numth premise whose head is
symbol. The default is to take the first so this is useful only when the first premise
whose head is symbol is not the principal one.

>phox> goal /\X /\Y (X & Y -> X).

|- /\ X,Y (X & Y -> X)
>phox> trivial.
proved
>phox> save and_elim_l.
Building proof .... Done.
Typing proof .... Done.
Verifying proof .... Done.
>phox> goal /\X /\Y (X & Y -> Y).

|- /\ X,Y (X & Y -> Y)
>>phox> trivial.
proved
>phox> save and_elim_r.
Building proof .... Done.
Typing proof .... Done.
Verifying proof .... Done.
>phox> new_elim $& l and_elim_l.
>phox> new_elim $& r and_elim_r.

If the leftmost proposition of the theorem is a propositional variable (and then positively
universally quantified), the rule defined by new_elim is called a left rule, that is like left
rules of sequent calculus.
The option [-i] tells the tactic trivial not to backtrack on such a left rule. This option
will be refused by the system if the theorem donnot define a left rule. The option should
be used for an invertible left rule, that is a rule that can commute with other rules. A
non sufficient condition is that premises of the rule are equivalent to the conclusion.
A somewhat degenerate (there is no premises) case is :

>phox> proposition false.elim
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/\X (False -> X).
trivial.
save.
%phox% 0 goal created.
proved
%phox% Building proof ....Done
Typing proof ....Done
Verifying proof ....Done
Saving proof ....Done
>phox> new_elim -i False n false.elim.
Theorem added to elimination rules.

The option [-n] tells the trivial tactic not to try to use this rule, except if [-i] is also
used. In this last case the two options [-i -n] tell the tactic trivial to apply this rule
first, and use it as the left proof command, that is only once. Recall that in this case
the left rule should be invertible. For instance :

>phox> proposition conjunction.left
/\X,Y,Z ((Y -> Z -> X) -> Y & Z -> X).

trivial.
save.
>phox>

|- /\X,Y,Z ((Y -> Z -> X) -> Y & Z -> X)

%phox% 0 goal created.
proved
%phox% Building proof ....Done
Typing proof ....Done
Verifying proof ....Done
Saving proof ....Done
>phox> new_elim -n -i $& s conjunction.left.
Theorem added to elimination rules.

The option [-t] should be used for transitivity theorems. It gives some optimisations for
automatic tactics (subject to changes).
The prefix Local tells that this rule should not be exported. This means that if you
use the Import or Use command, only the exported rules will be added.
You should also note that once one elimination rule has been introduced, the symbol
definition is no more expanded by the elim tactic. The elim tactic only tries to apply
each elimination rule. Thus if a connective needs more that one elimination rules, you
should prove all the corresponding theorems and then use the new_elim command.

new_equation {-l|-r|-b} name …. Add the given equations or conditional equations to
the equational reasoning used in conjunction with the high order unification algorithm.
name must be a claim or a theorem with at least one equality as an atomic formula
which is reachable from the top of the formula by going under a universal quantifier
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or a conjunction or to the right of an implication. This means that a theorem like
∀𝑥(𝐴𝑥 → 𝑓(𝑥) = 𝑡 & 𝑔(𝑥) = 𝑢) can be added as a conditional equation. Moreover
equations of the form 𝑥 = 𝑦 where 𝑥 and 𝑦 are variables are not allowed.
the option “-l” (the default) tells to use the equation from left to right. The option “-r”
tells to use the equation from right to left. The option “-b” tells to use the equation in
both direction.

>phox> claim add_O /\y:N (O + y = y).
>phox> claim add_S /\x,y:N (S x + y = S (x + y)).
>phox> new_requation add_O.
>phox> new_requation add_S.
>phox> goal /\x:N (x = O + x).
trivial.
>phox> proved

{Local} new_intro {-n} {-i} {-t} {-c} name theorem. If the theorem has the follow-
ing shape: ∀𝜒1...∀𝜒𝑛(𝐴1 → … → 𝐴𝑛 → 𝐶) (the quantifier can be of any order and
intermixed with the implications if you wish), then this theorem can be added as an
introduction rule for symbol, where symbol is the head of 𝐶. The formulae 𝐴1, … , 𝐴𝑛
are the premises and 𝐶 is the conclusion of the rule.
The name is used as an abbreviation when you want to precise which rule to apply
when using the intro command.
The option [-n] tells the trivial tactic not to try to use this rule. The option [-i] tells the
trivial tactic this rule is invertible. This implies that the trivial tactic will not try other
introduction rules if an invertible one match the current goal, and will not backtrack
on these rules.
The option [-t] should be used when this rule is a totality theorem for a function (like
∀𝑥, 𝑦(𝑁𝑥 → 𝑁𝑦 → 𝑁(𝑥+𝑦))), the option [-c] for a totality theorem for a “constructor”
like 0 or successor on natural numbers. It can give some optimisations on automatic
tactics (subject to changes). For the flag auto_type to work properly we recommend
to use the option [-i] together with these two options (totality theorems are in general
invertible).
The prefix Local tells that this rule should not be exported. This means that if you
use the Import or Use command, only the exported rules will be added.
You should also note that once one introduction rule has been introduced, the symbol
(head of 𝐶) definition is no more expanded by the intro tactic. The intro tactic
only tries to apply each introduction rule. Thus if a connective has more that one
introduction rules, you should prove all the corresponding theorems and then use the
new_intro command.

>phox> goal /\X /\Y (X -> X or Y).

|- /\ X /\ Y (X -> X or Y)
>phox> trivial.
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proved
>phox> save or_intro_l.
Building proof .... Done.
Typing proof .... Done.
Verifying proof .... Done.
>phox> goal /\X /\Y (Y -> X or Y).

|- /\ X /\ Y (Y -> X or Y)
>phox> trivial.
proved
>phox> save or_intro_r.
Building proof .... Done.
Typing proof .... Done.
Verifying proof .... Done.
>phox> new_intro l or_intro_l.
>phox> new_intro r or_intro_r.

A.1.4 Inductive definitions.
These macro-commands defines new theories with new rules.

{Local} Data …. Defines an inductive data type. See the dedicated chapter.

Data Nat n =
N0 : Nat N0

| S n : Nat n -> Nat (S n)
.

Data List A l =
nil : List A nil

| [cons] rInfix[3.0] x "::" l :
A x -> List A l -> List A (x::l)

.

Data Listn A n l =
nil : Listn A N0 nil

| [cons] rInfix[3.0] x "::" l :
/\n (A x -> Listn A n l -> Listn A (S n) (x::l))

.

Data Tree A B t =
leaf a : A a -> Tree A B (leaf a)

| node b l :
B b -> List (Tree A B) l -> Tree A B (node b l)

.

{Local} Inductive …. Defines an inductive predicate. See the dedicated chapter.
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Inductive And A B =
left : A -> And A B

| right : B -> And A B
.

Use nat.

Inductive Less x y =
zero : /\x Less N0 x

| succ : /\x,y (Less x y -> Less (S x) (S y))
.

Inductive Less2 x y =
zero : Less2 x x

| succ : /\y (Less2 x y -> Less2 x (S y))
.

Inductive Add x y z =
zero : Add N0 y y

| succ : /\x,z (Add x y z -> Add (S x) y (S z))
.

Inductive [Eq] Infix[5] x "==" y =
zero : N0 == N0

| succ : /\x,y (x == y -> S x == S y)
.

A.1.5 Managing files and modules.
add_path string. Add string to the list of all path. This path list is used to find files when

using the Import, Use and include commands. You can set the environment variable
𝑃𝐻𝑂𝑋𝑃 𝐴𝑇 𝐻 to set your own path (separating each directory with a column).

>phox> add_path "/users/raffalli/phox/examples".
/users/raffalli/phox/examples/

>phox> add_path "/users/raffalli/phox/work".
/users/raffalli/phox/work/
/users/raffalli/phox/examples/

Import module_name. Loads the interface file “module_name.afi” (This file is produced by
compiling an PhoX file). Everything in this file is directly loaded, no renaming applies
and objects of the same name will be merged if this is possible otherwise the command
will fail.
A renaming applied to a module will not rename symbols added to the module by the
Import command (unless the renaming explicitly forces it).
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Beware, if Import command fails when using PhoX interactively, the file can be partially
loaded which can be quite confusing !

include "filename". Load an ASCII file as if all the characters in the file were typed at
the top-level.

Use {-n} module_name {renaming}. Loads the interface file “module_name.afi” (This file
is produced by compiling a PhoX file). If given, the renaming is applied. Objects of the
same name (after renaming) will be merged if this is possible otherwise the command
will fail.
The option -n tells Use to check that the theory is not extended. That is no new
constant or axiom are added and no constant are instantiated by a definition.
The syntax of renaming is the following:

renaming := renaming_sentence { | renaming }

A renaming_sentence is one of the following (the rule matching explicitly the longest
part of the original name applies):

• name1 -> name2 : the symbol name1 is renamed to named2.
• _.suffix1 -> _.suffix2 : any symbol of the form xxx.suffix1 is renamed to

xxx.suffix2 (a suffix can contain some dots).
• _.suffix1 -> _ : any symbol of the form xxx.suffix1 is renamed to xxx.
• _ -> _.suffix2 : any symbol of the form xxx is renamed to xxx.suffix2.
• from module_name with renaming. : symbols created using the command Import

module_name will be renamed using the given renaming (By default they would
not have been renamed).

A renaming applied to a module will rename symbols added to the module by the Use
command.
Beware, if Use command fails when using PhoX interactively, the file can be partially
imported which can be quite confusing !

A.1.6 TeX.
{Local} tex_syntax symbol syntax. Tells PhoX to use the given syntax for this symbol

when producing TeX formulas.
The prefix Local tells that this definition should not be exported. This means that if
you use the Import or Use command, only the exported definitions will be added.

A.1.7 Obtaining some informations on the system.
depend theorem. Gives the list of all axioms which have been used to prove the theorem.

>phox> depend add_total.
add_S
add_O
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eshow extension-list. Shows the given extension-list. Possible extension lists are (See
edel): equation (the list of equations introduced by the new_equation command),
elim, intro, (the introduction and elimination rules introduced by the new_elim and
new_intro {-t} commands), closed (closed definitions introduced by the close_def
command) and tex (introduced by the tex_syntax command).

>phox> eshow elim.
All_rec
and_elim_l
and_elim_r
list_rec
nat_rec

flag name. or flag name value. Prints the value (in the first form) or modify an internal
flags of the system. The different flags are listed in the index B.

>phox> flag axiom_does_matching.
axiom_does_matching = true
>phox> flag axiom_does_matching false.
axiom_does_matching = false

path. Prints the list of all paths. This path list is used to find files when using the include
command.

>phox> path.
/users/raffalli/phox/work/
/users/raffalli/phox/examples/

print expression. In case expression is a closed expression of the language in use, prints it
and gives its sort, gives an (occasionally) informative error message otherwise. In case
expression is a defined expression (constant, theorem …) gives the definition.

>PhoX> print \x,y (y+x).
\x,y (y + x) : nat -> nat -> nat
>PhoX> print \x (N x).
N : nat -> prop
>PhoX> print N.
N = \x /\X (X N0 -> /\y:X X (S y) -> X x) : nat -> prop
>PhoX> print equal.extensional.
equal.extensional = /\X,Y (/\x X x = Y x -> X = Y) : theorem

print_sort expression. Similar to print, but gives more information on sorts of bounded
variable in expressions.
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>PhoX> print_sort \x,y:<nat (y+x).
\x:<nat,y:<nat (y + x) : nat -> nat -> nat
>PhoX> print_sort N.
N = \x:<nat /\X:<nat -> prop (X N0 -> /\y:<nat X (S y) -> X x)
: nat -> prop

priority list of symbols. Print the priority of the given symbols. If no symbol are given,
print the priority of all infix and prefix symbols.

>PhoX> priority N0 $S $+ $*.
S Prefix[2] nat -> nat
* rInfix[3] nat -> nat -> nat
+ rInfix[3.5] nat -> nat -> nat
N0 nat

search string type. Prints the list of all symbols which have the type and whose name
contains the string. If no type is given, it prints all symbols whose name contains the
string. If the empty string is given, it prints all symbols which have the type.

>PhoX> Import nat.
...
>PhoX> search "trans"
>PhoX> .
equal.transitive theorem
equivalence.transitive theorem
lesseq.ltrans.N theorem
lesseq.rtrans.N theorem
>PhoX> search "" nat -> nat -> prop.
!= Infix[5] 'a -> 'a -> prop
< Infix[5] nat -> nat -> prop
<= Infix[5] nat -> nat -> prop
<> Infix[5] nat -> nat -> prop
= Infix[5] 'a -> 'a -> prop
> Infix[5] nat -> nat -> prop
>= Infix[5] nat -> nat -> prop
predP nat -> nat -> prop

A.1.8 Term-extraction.
Term-extraction is experimental. You need to launch phox with option -f to use it. At this
moment (2001/02) there is a bug that prevents to use correctly command Import with option
-f.

A 𝜆𝜇-term is extracted from in proof in a way similar to the one explained in Krivine’s book
of lambda-calcul for system Af2. To summarise rules on universal quantifier and equational
reasoning are forgotten by extraction.

compile theorem_name. This command extracts a term from the current proof of the the-
orem theorem_name. The extracted term has then the same name as the theorem.
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tdef term_name= term. This commands defines term_name as term.

eval [-kvm term.] This command normalises the term in 𝜆𝜇-calcul, and print the result.
With -kvm option, Krivine’s syntax is used for output.

output [-kvm {term_name1 …term_name𝑛}.] This command prints the given arguments
term_name1…term_name𝑛, prints all defined terms (by compile or tdef) if no argument
is given. With -kvm option, Krivine’s syntax is used for output.

tdel {term_name1 …term_name𝑛}. This commands deletes the terms term_name1…term_name𝑛
given as arguments. If no argument is given, the command deletes all terms, ex-
cept peirce_law. These terms are the ones defined by the commands compile and
tdef. The term peirce_law is predefined, but can be explicitly deleted with tdel
peirce_law.

A.2 Proof commands.
The command described in this section are available only after starting a new proof using
the goal command. Moreover, except save and undo they can’t be use after you finished the
proof (when the message proved has been printed).

A.2.1 Basic proof commands.

All proof commands are complex commands, using unification and equational rewriting. The
following ones are extensions of the basic commands of natural deduction, but much more
powerful.

axiom hypname. Tries to prove the current goal by identifying it with hypothesis hypname,
using unification and equational reasoning.

...
G := X (?1 + N0)

|- X (N0 + ?2)
%PhoX% axiom G.
0 goal created.
proved
%

...
H := N x
H0 := N y
H1 := X (x + S N0)

|- X (S x)
%PhoX% axiom H1.
0 goal created.
proved
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elim {num0} expr0 { with opt1 {and/then ... {and/then optn}...} . 2]
This command corresponds to the following usual tool in natural proof : prove the
current goal by applying hypothesis or theorem expr0. More formally this command
tries to prove the current goal by applying some elimination rules on the formula or
theorem expr0 (modulo unification and equational reasoning). Elimination rules are
built in as the ordinary ones for forall quantifier and implication. For other symbols,
elimination rules can be defined with the new_elim) commands.
After this tactic succeeds, all the new goals (Hypothesis of expr0 adapted to this par-
ticular case) are printed, the first one becoming the new current goal.

New goal is:
goal 1/1
H := N x
H0 := N y
H1 := N z

|- x + y + z = (x + y) + z

%PhoX% elim H. (* the default elimination rule for predicate N
is induction *)

2 goals created.

New goals are:
goal 1/2
H := N x
H0 := N y
H1 := N z

|- N0 + y + z = (N0 + y) + z

goal 2/2
H := N x
H0 := N y
H1 := N z
H2 := N y0
H3 := y0 + y + z = (y0 + y) + z

|- S y0 + y + z = (S y0 + y) + z

The following example use equational rewriting :

H := N x
H0 := N y
H1 := N z

|- x + y + z = (x + y) + z

2Curly braces denote an optional argument. You should note type them.



60 APPENDIX A. COMMANDS.

%PhoX% elim equal.reflexive.
(* associativity equations are in library nat *)
0 goal created.

You have the option to give some more informations opti, that can be expressions
(individual terms or propositions), or abbreviated name of elimination rules.
Expressions has to be given between parenthesis if they are not variables. They indi-
cate that a for-all quantifier (individual term) or an implication (proposition) occuring
(strictly positively) in expr0 has to be eliminated with this expression. In case there
is only one such option, the first usable occurence form left to right is used (regardless
the goal).

def lInfix[5] R "Transitive" =
/\x,y,z ( R x y -> R y z -> R x z).

...

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c
%PhoX% elim H with H0.
1 goal created, with 1 automatically solved.

but

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c

%PhoX% elim H with H1.
Error: Proof error: Tactic elim failed.

You can pass several options separated by and or then. In case opti is introduced
by an and, the tactic search the first unused occurrence in expr0 of forall quantifier,
implication or connective usable with opti.

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c

%PhoX% elim H with a and b and c.
0 goal created.
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to skip a variable or hypothesis you can use unification variables (think that ? match
any variable or hypothesis) :

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c

%PhoX% elim H with ? and b. (* ? will match a *)
0 goal created.

In case opti is introduced by a then : ... opti then opti' ..., the tactic search
the first unused occurrence of forall quantifier, implication or connective usable with
opti' after the occurrence used for opti.

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c

%PhoX% elim H with H0 and a.
0 goal created.

but

H := R Transitive
H0 := R a b
H1 := R b c

|- R a c

%PhoX% elim H with H0 then a.
Error: Proof error: Tactic elim failed.

Abbreviated name of elimination rules have to be given between square brackets. The
tactic try to uses this elimination rule for the first connective in expr0 using it.

H := N x
|- x = N0 or \/y:N x = S y

%PhoX% elim H with [case].
2 goals created.

New goals are:
goal 1/2
H := N x
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H0 := x = N0
|- N0 = N0 or \/y:N N0 = S y

goal 2/2
H := N x
H0 := N y
H1 := x = S y

|- S y = N0 or \/y0:N S y = S y0

You can use abbreviated names and expression, and and then together. All occurrences
matched after a then opti have to be after the one matched by opti. The and matches
the first unused occurrence with respect to the previous constraint on a possible then
placed before.

H := /\x:N ((x = N0 -> C) & ((x = N1 -> C) & (x = N2 -> C)))
|- C

%PhoX% elim H with N1 and [r] then [l].
2 goals created.

New goals are:
goal 1/2
H := /\x:N ((x = N0 -> C) & ((x = N1 -> C) & (x = N2 -> C)))

|- N N1

goal 2/2
H := /\x:N ((x = N0 -> C) & ((x = N1 -> C) & (x = N2 -> C)))

|- N1 = N1

The first option num0 is not very used. It allows to precise the number of elimination
rules to apply.

elim {num0} {-num1 opt1} ... {-numn optn} expr0.3 This syntax is now deprecated but
still used in libraries and examples. Use the syntax above!
Tries to prove the current goal by applying some elimination rules on the formula or
theorem expr0. You have the option to precise a minimum number of elimination rules
(num0) or/and give some information opti to help in finding the numi-th elimination.

• If the numi-th elimination acts on a for-all quantifier, opti must be an expression
which can be substituted to this variable (this expression has to be given between
parenthesis if it is not a variable).

• If the numi-th elimination acts on an implication, opti must be an expression
which can be unified with the left formula in the implication (this expression has
to be given between parenthesis if it is not a variable).

• If the numi-th elimination acts on a connective for which you introduced new
elimination rules (using new_elim), opti has to be the abbreviated name of one
of these rules, between square bracket.
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Moreover, this tactic expands the definition of a symbol if and only if this symbol has
no elimination rules.
After this tactic succeeded, all the new goals are printed, the last one to be printed is
the new current goal.

>phox> goal /\x/\y/\z (N x -> N y -> N z ->
x + (y + z) = (x + y) + z).

|- /\ x /\ y /\ z (N x -> N y -> N z ->
x + y + z = (x + y) + z)

>phox> intro 6.

H := N x
H0 := N y
H1 := N z

|- x + y + z = (x + y) + z
>phox> elim -4 x nat_rec.

H := N x
H0 := N y
H1 := N z

|- /\ y0 (N y0 -> y0 + y + z = (y0 + y) + z ->
S y0 + y + z = (S y0 + y) + z)

H := N x
H0 := N y
H1 := N z

|- O + y + z = (O + y) + z

>phox> elim equal_refl.

H := N x
H0 := N y
H1 := N z

|- /\ y0 (N y0 -> y0 + y + z = (y0 + y) + z ->
S y0 + y + z = (S y0 + y) + z)

intro num. or intro info1 .... infoN In the second form, infoX is either an identifier
name, either an expression of the shape [name opt] and opt is empty or is a “with”
option for an elim command.
In the first form, apply num introduction rules on the goal formula. New names are
automatically generated for hypothesis and universal variables. In this form, the intro
command only uses the last intro rule specified for a given connective by the new_intro
command.
In the second form, for each name an intro rule is applied on the goal formula. If
the outermost connective is an implication, the name is used as a new name for the
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hypothesis. If it is an universal quantification, the name is used for the new variable.
If it is a connective with introduction rules defined by the new_intro command, name
should be the name of one of these rules and this rule will be applied with the given
elim option is some where given.
Moreover, this tactic expands definition of a symbol if and only if this symbol has no
introduction rules.

>phox> goal /\x /\y (N x -> N y -> N (x + y)).

|- /\ x /\ y (N x -> N y -> N (x + y))
>phox> intro 7.

H := N x
H0 := N y
H1 := X O
H2 := /\ y0 (X y0 -> X (S y0))

|- X (x + y)
>phox> abort.
>phox> goal /\X /\Y /\x (X x & Y -> \/x X x or Y).

|- /\ X /\ Y /\x (X x & Y -> \/x X x or Y)
>phox> intro A B a H l.

H := A a & B
|- \/x A x

>phox> intro [n with a].

H := A x & B
|- A a

intros {symbol_list}. Apply as many introductions as possible without expanding a defi-
nition. If a symbol_list is given only rules for these symbols are applied and only defined
symbols in this list are expanded. If no list is given, Definitions are expanded until the
head is a symbol with some introduction rules and then only those rules will be applied
and those definition will be expanded (if this head symbol is an implication or a univer-
sal quantification, introduction rules for both implication and universal quantification
will be applied, as showed by the following example).

>phox> goal /\x /\y (N x -> N y -> N (x + y)).

|- /\ x,y (N x -> N y -> N (x + y))
>phox> intros.

H0 := N y
H := N x

|- N (x + y)
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A.2.2 More proof commands.
apply { with opt1 {and/then ... { and/then optn}...} . Equivalent to use ?. elim

... . Usage is similar to elim (see this entry above for details). The command apply
adds to the current goal a new hypothesis obtained by applying expr0 (an hypothesis
or a theorem) to one or many hypothesis of the current goal. as for elim, if there are
unproved hypothesis of expr0 they are added as new goals. The difference with elim,
is that apply has not to prove the current goal.

H0 := /\a0,b (R a0 b -> R b a0)
H1 := /\x \/y R x y
H := /\a0,b,c (R a0 b -> R b c -> R a0 c)

|- R a a

%PhoX% apply H1 with a.

...
G := \/y R a y

|- R a a

%PhoX% left G.
...
H2 := R a y

|- R a a

%PhoX% apply H0 with H2.
...
G := R y a

|- R a a

[%PhoX% elim H with ? and y and ?. (* concludes *)]
[%Phox% elim H with H2 and G. (* concludes *)]
[%Phox% apply H with H2 and G. (* concludes if auto_lvl=1. *)]

%Phox% apply H with a and y and a. (* does not conclude. *)
...
G0 := R a y -> R y a -> R a a

|- R a a
...

apply {num0} {-num1 opt1} ... {-numn optn} expr0. Old syntax for apply, don’t use
it ! See elim.

by_absurd. Equivalent to elim absurd. intro.

by_contradiction. Equivalent to elim contradiction. intro.

from expr. Try to unify expr (which can be a formula or a theorem) with the current goal.
If it succeeds, expr replace the current goal.
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>phox> goal /\x/\y/\z (N x -> N y -> N z ->
x + (y + z) = (x + y) + z).

|- /\ x /\ y /\ z (N x -> N y -> N z ->
x + y + z = (x + y) + z)

>phox> intro 6.
....

....

H := N x
H0 := N y
H1 := N z
H2 := N y0
H3 := y0 + y + z = (y0 + y) + z

|- S y0 + y + z = (S y0 + y) + z
>phox> from S (y0 + y + z) = S (y0 + y) + z.

H := N x
H0 := N y
H1 := N z
H2 := N y0
H3 := y0 + y + z = (y0 + y) + z

|- S (y0 + y + z) = S (y0 + y) + z
>phox> from S (y0 + y + z) = S ((y0 + y) + z).

H := N x
H0 := N y
H1 := N z
H2 := N y0
H3 := y0 + y + z = (y0 + y) + z

|- S (y0 + y + z) = S ((y0 + y) + z)
>phox> trivial.
proved

left hypname {num | info1 .... infoN}. An elimination rule whose conclusion can be
any formula is called a left rule. The left command applies left rules to the hypothesis
of name hypname. If an integer num is given, then num left rule are applied. The
arguments info1 .... infoN are used as in the intro command.

>phox> goal /\X,Y (\/x (X x or Y) -> Y or \/x X x).

|- /\X /\Y (\/x (X x or Y) -> Y or \/x X x)

%phox% intros.
1 goal created.
New goal is:
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H := \/x (X x or Y)
|- Y or \/x X x

%phox% left H z.
1 goal created.
New goal is:

H0 := X z or Y
|- Y or \/x X x

%phox% left H0.
2 goals created.
New goals are:

H1 := X z
|- Y or \/x X x

H1 := Y
|- Y or \/x X x

%phox% trivial.
0 goal created.
Current goal now is:

H1 := X z
|- Y or \/x X x

%phox% trivial.
0 goal created.
proved

lefts hypname {symbol_list}. Applies “many” left rules on the hypothesis of name hyp-
name. If a symbol_list is given only rules for these symbols are applied and only defined
symbols in this list are expanded. If no list is given, Definitions are expanded until the
head is a symbol with some left rules and then only those rules will be applied and those
definitions will be expanded.

>phox> goal /\X,Y (\/x (X x or Y) -> Y or \/x X x).

|- /\X /\Y (\/x (X x or Y) -> Y or \/x X x)

%phox% intros.
1 goal created.
New goal is:
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H := \/x (X x or Y)
|- Y or \/x X x

%phox% lefts H $\/ $or.
2 goals created.
New goals are:

H1 := X x
|- Y or \/x0 X x0

H1 := Y
|- Y or \/x0 X x0

%phox% trivial.
0 goal created.
Current goal now is:

H1 := X x
|- Y or \/x0 X x0

%phox% trivial.
0 goal created.
proved

...
H := N x
H0 := N y
H1 := N y0
H2 := S y0 <= S y

|- S y0 <= y or S y0 = S y
%PhoX% print lesseq.S_inj.N.
lesseq.S_inj.N = /\x0,y1:N (S x0 <= S y1 -> x0 <= y1) : theorem
%PhoX% apply -5 H2 lesseq.S_inj.N.
3 goals created, with 2 automatically solved.

New goal is:
H := N x
H0 := N y
H1 := N y0
H2 := S y0 <= S y
G := y0 <= y

|- S y0 <= y or S y0 = S y

Another example (in combination with rmh) :

...
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H := List D0 l
H0 := D0 a
H1 := List D0 l'
H2 := /\n0:N (n0 <= length l' -> List D0 (nthl l' n0))
H4 := N y
G := y <= length l'

|- List D0 (nthl (a :: l') (S y))

%PhoX% apply -3 G H2 ;; rmh H2.
2 goals created, with 1 automatically solved.
New goal is:

H := List D0 l
H0 := D0 a
H1 := List D0 l'
H4 := N y
G := y <= length l'
G0 := List D0 (nthl l' y)

|- List D0 (nthl (a :: l') (S y))

prove expr. Adds expr to the current hypothesis and adds a new goal with expr as con-
clusion, keeping the hypothesis of the current goal (cut rule). expr may be a theorem,
then no new goal is created. The current goal becomes the new statment.

>phox> goal /\x1/\y1/\x2/\y2 (pair x1 y1 = pair x2 y2
-> x1 = x2 or y1 = x2).

|- /\ x1 /\ y1 /\ x2 /\ y2 (pair x1 y1 = pair x2 y2
-> x1 = x2 or y1 = x2)

>phox> intro 5.

H := pair x1 y1 = pair x2 y2
|- x1 = x2 or y1 = x2

>phox> prove pair x2 y2 = pair x1 y1.

H := pair x1 y1 = pair x2 y2
G := pair x2 y2 = pair x1 y1

|- x1 = x2 or y1 = x2

H := pair x1 y1 = pair x2 y2
|- pair x2 y2 = pair x1 y1

use expr. Same as prove command, but keeps the current goal, only adding expr to hy-
pothesis.
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A.2.3 Automatic proving.
Almost all proof commands use some kind of automatic proving. The following ones try to
prove the formula with no indications on the rules to apply.

auto ... Tries trivial with bigger and bigger value for the depth limit. It only stops when
it succeed or when not enough memory is available. This command uses the same option
as trivial does.

trivial {num} {-|= name1 ... namen} {+ theo1 ... theop}.4 Try a simple trivial tac-
tic to prove the current goal. The option num give a limit to the number of elimination
performed by the search. Each elimination cost (1 + number of created goals).
The option {- name1 ... namen} tells trivial not to use the hypothesis name1 ...
namen. The option {= name1 ... namen} tells trivial to only use the hypothesis
name1 ... namen. The option + theo1 ... theop tells trivial to use the given
theorem.

>phox> goal /\x/\y (y E pair x y).

|- /\x/\y (y E pair x y)
>phox> trivial + pair_ax.
proved.

A.2.4 Rewriting.
rewrite {-l lim | -p pos | -ortho} {{-r|-nc} eqn1} {{-r|-nc} eqn2} ... If eqn1,

eqn2, ... are equations (or conditional equations) or list of equations (defined using
def_thlist), the current goal is rewritten using these equations as long as possible.
For each equation, the option -r indicates to use it from right to left (the default is left
to right) and the option -nc forces the system not to try to prove automatically the
conditions necessary to apply the equation (the default is to try).

...
H0 := N y
H1 := N z
H2 := N y0
H3 := y0 * (y + z) = y0 * y + y0 * z

|- S y0 * (y + z) = S y0 * y + S y0 * z

%PhoX% print mul.lS.N.
mul.lS.N = /\x0,y1:N S x0 * y1 = y1 + x0 * y1 : theorem
%PhoX% rewrite mul.lS.N.
1 goal created.
New goal is:

H0 := N y
H1 := N z
H2 := N y0
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H3 := y0 * (y + z) = y0 * y + y0 * z
|- (y + z) + y0 * (y + z) = (y + y0 * y) + z + y0 * z

%PhoX% rewrite H3.
1 goal created.
New goal is:

H0 := N y
H1 := N z
H2 := N y0
H3 := y0 * (y + z) = y0 * y + y0 * z

|- (y + z) + y0 * y + y0 * z = (y + y0 * y) + z + y0 * z
...

If sym1, sym2, are defined symbol, their definition will be expanded. Do not use rewrite
just for expansion of definitions, use unfold instead.
Note: by default, rewrite will unfold a definition if and only if it is needed to do
rewriting, while unfold will not (this mean you can use unfold to do rewriting if you
do not want to perform rewriting under some definitions).
The global option -l lim limits to lim steps of rewriting. The option -p pos indicates
to perform only one rewrite step at the pos-th possible occurrence (occurrences are
numbered from 0). These options allows to use for instance commutativity equations.
The option -ortho tells the system to apply rewriting from the inner subterms to the
root of the term (if a rewrite rule 𝑟2 is applied after another rule 𝑟1, then 𝑟2 is not
applied under 𝑟1). This restriction ensures termination, but do not always reach the
normal form when it exists.

...
H := N x
H0 := N y
H1 := N z

|- (y + z) * x = y * x + z * x

%PhoX% rewrite -p 0 mul.commutative.N.
1 goal created.
New goal is:

H := N x
H0 := N y
H1 := N z

|- x * (y + z) = y * x + z * x

%PhoX% rewrite -p 1 mul.commutative.N.
1 goal created.
New goal is:
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H := N x
H0 := N y
H1 := N z

|- x * (y + z) = x * y + z * x
...

rewrite_hyp hyp_name ... Similar to rewrite except that it rewrites the hypothesis named
hyp_name. The dots (...) stands for the rewrite arguments.

unfold ... A synonymous to rewrite, use it when you only do expansion of definitions.

unfold_hyp hyp_name ... A synonymous to rewrite_hyp, use it when you only do expan-
sion of definitions.

A.2.5 Managing existential variables.
Existential variables are usually designed in phox by ?x where x is a natural number. They
are introduced for instance by applying an intro command to an existential formula, or
sometimes by applying an elim H command where H is an universal formula.

You can use existential variables in goals, for instance :

>PhoX> goal N3^N2=?1.

Goals left to prove:

|- N3 ^ N2 = ?1

%PhoX% rewrite calcul.N.
1 goal created.
New goal is:

Goals left to prove:

|- S S S S S S S S S N0 = ?1

%PhoX% intro.
0 goal created.
proved
%PhoX% save essai.
Building proof ....
Typing proof ....
Verifying proof ....
Saving proof ....
essai = N3 ^ N2 = S S S S S S S S S N0 : theorem

constraints. Print the constraints which should be fulfilled by unification variables.

>phox> goal /\X (/\x\/y X x y -> \/y/\x X x y).
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|- /\ X (/\ x \/ y X x y -> \/ y /\ x X x y)
%phox% intro 4.

H := /\ x0 \/ y X x0 y
|- X x ?32

%phox% constraints.
Unification variable ?32 should not use x

instance expr0 expr1. :
Unify expr0 and expr1. This is useful to instantiate some unification variables. expr0
must be a variable or an expression between parenthesis.

H := N x
H0 := N y
H3 := y = N2 * X + N1

|- S y = N2 * ?792
>phox> instance ?792 S X.

H := N x
H0 := N y
H3 := y = N2 * X + N1

|- S y = N2 * S X

lock var. : This command locks the existential variable (or meta-variable, or unification
variable) var for unification. That is for all succeeding commands var is seen as a con-
stant, except the command instance that makes the existential variable disappear, and
the command unlock that explicitely unlocks the existential variable. When introduced
in a proof, it is possible that you still donnot know the value to replace an existential
variable by. As there is no more general unifier in presence of high order logic and equa-
tional reasoning, somme commands could instanciate an unlocked existential variable
in an unexpected way.
For instance in the following case :

%PhoX% local y = x - k.
...
%PhoX% prove N y.
2 goals created.
New goals are:

Goals left to prove:

H := N k
H0 := N n
G := N ?1
H1 := N x
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H2 := x >= ?1
G0 := k <= ?1

|- N y
...
%PhoX% trivial.

if ?1 is not locked, ?1 will be instanciated by y, which is not the expected behaviour.

unlock var. : This command unlocks the existential variable (or existential variable) var
for unification, in case this variable is locked (see above lock). Recall that instance
unlock automatically the existential variable if necessary.

A.2.6 Managing goals.
goals. Prints all the remaining goals, the current goal being the last to be printed, being

the first with option -pg used for Proof General (cf next for an example).

after {em num}. Change the current goal. If no num is given then the current goal become
the last goal. If num is given, then the current goal is sent after the numth.

next {em num}. Change the current goal. If no num is given then the current goal becomes
the last goal. If a positive num is given, then the current goal becomes the numth (the
0th being the current goal). If a negative num is given, the numth goal become the
current one (next -4 is the “inverse” command of next 4).

>phox> goals.

H := N x
H0 := N y
H1 := N z

|- /\ y0 (N y0 -> y0 + y + z = (y0 + y) + z ->
S y0 + y + z = (S y0 + y) + z)

H := N x
H0 := N y
H1 := N z

|- /\ y0 (N y0 -> O + y0 + z = y0 + z ->
O + S y0 + z = S y0 + z)

H := N x
H0 := N y
H1 := N z

|- O + O + z = O + z
>phox> next.

H := N x
H0 := N y
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H1 := N z
|- /\ y0 (N y0 -> O + y0 + z = y0 + z ->

O + S y0 + z = S y0 + z)
...

select num. The numth goal becomes the current goal.

A.2.7 Managing context.

local ..... The same syntax as the def command but to define symbols local to the current
proof (see the def (section A.1.2) command for the syntax).

rename oldname newname. Rename a constant or an hypothesis local to this goal (can not
be used to rename local definitions).

rmh name1 ... namen. Deletes the hypothesis name1, ...,namen from the current goal.

>phox> goal /\X /\Y (Y -> X -> X).

|- /\ X /\ Y (Y -> X -> X)
>phox> intro 3.

H := Y
|- X -> X

>phox> rmh H.

|- X -> X

slh name1 ... namen. Keeps only the hypothesis name1, ...,namen in the current goal.

>phox> goal /\x,y : N N (x + y).

|- /\ x,y : N N (x + y)
>phox> intros.

H0 := N y
H := N x

|- N (x + y)
>phox> slh H.

H := N x
|- N (x + y)

A.2.8 Managing state of the proof.

abort. Abort the current proof, so you can start another one !
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>phox> goal /\X /\Y (X -> Y).

|- /\ X /\ Y (X -> Y)
>phox> intro 3.

H := H
|- Y

>phox> goal /\X (X -> X).
Proof error: All ready proving.
>phox> abort.
>phox> goal /\X (X -> X).

|- /\ X (X -> X)

{Local} save {name}. When a proof is finished (the message proved has been printed),
save the new theorem with the given name in the data base. Note: the proof is verified
at this step, if an error occurs, please report the bug !

You do not have to give the name if the proof was started with the theorem command
or a similar one instead of goal : the name from the declaration of theorem is choosen.

The prefix Local tells that this theorem should not be exported. This means that if
you use the Import or Use command, only the exported theorems will be added.

>phox> goal /\x (N x -> N S x).

|- /\ x (N x -> N (S x))
>phox> trivial.
proved
>phox> save succ_total.
Building proof .... Done.
Typing proof .... Done.
Verifying proof .... Done.

undo {num}. Undo the last action (or the last num actions).

>phox> goal /\X (X -> X).

|- /\ X (X -> X)
>phox> intro.

|- X -> X
>phox> undo.

|- /\ X (X -> X)
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A.2.9 Tacticals.
This feature is new and has limitations.

tactic1 ;; tactic2 Use tactic1 for all goals generated by tactic1.

Try tactic If tactic is successful, Try tactic is the same as tactic. If tactic fails, Try
tactic succeeds and does not modify the current goal. This is useful after a ;;.
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Appendix B

Flags index.

In this index we list all the PhoX flags (see the description of the command flag in the index
A to learn how to print and modify the value of these flags).

auto_lvl (integer, default is 0) : Control the automatic detection of axioms: If it is set to
0 no detection is performed. If it is set to 1, axioms are detected when the goal is
structurally equal to an hypothesis. If it is set to 2, axioms are detected when the goal
unifies is equal to an hypothesis up to the expansion of some definitions. If it is set to
3, axioms are detected if the goal unifies with an hypothesis (using no equations). We
recommend avoiding 3 as it may instantiate variables with the wrong value.

auto_type (bool, default is false) : automatically apply all the introduction rule which were
introduced with the flags -i and -c or -t. We recommend setting this flag to true and
using auto_lvl set to 2 to solve automatically all the “typing” goals (like proving that
something is an integer).

binder_tex_space (integer, default is 3) : set the space after a binder when PhoXis printing
TeX formulas.

comma_tex_space (integer, default is 5) : set the space after punctuation when PhoXis print-
ing TeX formulas.

ellipsis_text (string, default is “...”) : the text to be printed when an expression is too
deep (used by the pretty printer only).

eq_breadth (integer, default is 4) : maximum number of equations used at each step of
rewriting.

eq_flvl (integer, default is 3) : maximum number of interleaved equations tried without
decreasing the distance (the rewriting algorithm uses a distance between first order
terms).

eq_depth (integer, default is 100) : maximum number of interleaved equations applied by
the rewriting algorithm.

margin (integer, default is 80) : size of the page (used by the pretty printer only).

max_indent (integer, default is 50) : maximum number of indentation (used by the pretty
printer only).
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max_boxes (integer, default is 100) : control the maximum printing “depth”. If the expression
is too deep, an ellipsis is printed (used by the pretty printer only).

min_tex_space (integer, default is 20) : set the minimum space (in 100th of em) between to
tokens when PhoX is printing TeX formulas.

max_tex_space (integer, default is 40) : set the minimum space (in 100th of em) between to
tokens when PhoX is printing TeX formulas.

tex_indent (integer, default is 200) : set the indentation space (in 100th of em) used by
PhoX when printing multi-lines TeX formulas.

tex_lisp_app (boolean, default is true) : If true the syntax 𝑓 𝑥 𝑦 is used for application
when producing LaTeX formulas. If false, the syntax 𝑓(𝑥, 𝑦) is used.

tex_type_sugar (boolean, default is true) : If true the syntactic sugar ∀𝑥 ∶ 𝐴 𝐵 for ∀𝑥(𝐴𝑥 →
𝐵) is used when producing LaTeX formulas.

tex_margin (integer, default is 80) : size of the page used when printing verbatim formulas
in TeX.

tex_max_indent (integer, default is 50) : maximum number of indentation used when print-
ing verbatim formulas in TeX.

trivial_depth (integer, default is 4) : default value for the trivial command.
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