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Chapter 1

Basic PhoX Library

Warning: This library is always loaded !

1.1 Propositionnal connective.
1.1.1 Conjunction.
Definition 1.1 Conjunction.

X ∧ Y := ∀K ((X → Y → K) → K) X ∧ Y

Proposition 1.2 Conjunction rules.

• conjunction.intro:

∀X,Y (X → Y → X ∧ Y)

conjunction.intro added as introduction rule (abbrev: n , options: )

• conjunction.left.elim:

∀X,Y (X ∧ Y → X)

• conjunction.right.elim:

∀X,Y (X ∧ Y → Y)

• conjunction.left:

∀X,Y,Z ((Y → Z → X) → Y ∧ Z → X)
0written by: Christophe Raffalli, Paul Rozière (Université de Savoie, université Paris

VII)
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conjunction.left added as elimination rule (abbrev: s , options: -n -i )
conjunction.left.elim added as elimination rule (abbrev: l , options: )
conjunction.right.elim added as elimination rule (abbrev: r , options: )

Definition 1.3 Equivalence.

X ↔ Y := (X → Y) ∧ (Y → X)X ↔ Y

1.1.2 Disjunction.
Definition 1.4 Disjunction.

X ∨ Y := ∀K ((X → K) → (Y → K) → K)X ∨ Y

Proposition 1.5 Disjunction rules.

• disjunction.left.intro:

∀X,Y (X → X ∨ Y)

• disjunction.right.intro:

∀X,Y (Y → X ∨ Y)

disjunction.left.intro added as introduction rule (abbrev: l , options:
)

disjunction.right.intro added as introduction rule (abbrev: r , options:
)

• disjunction.elim:

∀X,Y,Z ((Y → X) → (Z → X) → (Y ∨ Z) → X)

disjunction.elim added as elimination rule (abbrev: n , options: -i )

1.1.3 Propositional constants and negation.
Definition 1.6 Propositional constants and negation.

• (⊥) := ∀X XFalse

• (⊤) := ∀X (X → X)True

• (¬) X := X → ⊥¬ X

Proposition 1.7 Propositional constants and negation rules.
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• true.intro:
⊤

true.intro added as introduction rule (abbrev: n , options: )

• true.elim:
∀X (X → (⊤) → X)

true.elim added as elimination rule (abbrev: l , options: -i -n )

• false.elim:
∀X ((⊥) → X)

false.elim added as elimination rule (abbrev: n , options: -i )

• not.elim:
∀X,Y (X → (¬) X → Y)

1.1.4 Existential quantifiers.

Definition 1.8 Existential quantifiers definitions.

• ∃x A x := ∀K (∀x∶A K → K) ∃x A x

• ∃!x A x := ∃z ∀w (A w ↔ w = z) ∃!x A x

Proposition 1.9 Existential rules

• exists.intro:
∀A ∀x∶A ∃x A x

exists.intro added as introduction rule (abbrev: n , options: )

• exists.elim:
∀X ∀A (∀x∶A X → ∃x A x → X)

exists.elim added as elimination rule (abbrev: l , options: -i )
equal.reflexive added as introduction rule (abbrev: refl , options:
-i )

• exists.one.intro:

∀A ∀x∶A (∀y∶A y = x → ∃!x A x)

exists.one.intro added as introduction rule (abbrev: n , options: )
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• exists.one.elim:

∀X ∀A (∀z∶A (∀w∶A w = z → X) → ∃!x A x → X)

exists.one.elim added as elimination rule (abbrev: n , options: -i )

Definition 1.10 The arrow type

E ⇒ D := 𝜆f ∀x∶E D (f x)E ⇒ D

The next definition is useful to get extra parenthesis.

Definition 1.11

((e)) := e{{ e }}

1.1.5 Equality.
Axiom 1.12 equal.proposition

∀X,Y ((X ↔ Y) → X = Y)

equal.proposition added as introduction rule (abbrev: prop , options: )

Axiom 1.13 equal.extensional

∀X,Y (∀x X x = Y x → X = Y)

Proposition 1.14 equal.symmetric

∀x,y (x = y → y = x)

Proposition 1.15 equal.transitive

∀x,y,z (x = y → y = z → x = z)

Definition 1.16

x ≠ y := (¬) (x = y)x ≠ y

Proposition 1.17 not_equal_refl

∀x,y (x ≠ y → y ≠ x)

Definition 1.18

equal.decidable P := ∀x,y∶P (x = y ∨ x ≠ y)equal.decidable P
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1.1.6 Some tautologies.
Proposition 1.19 int_contraposition_general

∀A,B ((A → B) → ∀X ((B → X) → A → X))
Proposition 1.20 int_contraposition

∀A,B ((A → B) → (¬) B → (¬) A)
Proposition 1.21 equivalence.int_contraposition

∀A,B ((A ↔ B) → ((¬) A ↔ (¬) B))
Proposition 1.22 equivalence.reflexive

∀A (A ↔ A)
Proposition 1.23 equivalence.symmetrical

∀A,B ((A ↔ B) → (B ↔ A))
Proposition 1.24 equivalence.transitive

∀A,B,C ((A ↔ B) → (B ↔ C) → (A ↔ C))
Proposition 1.25 disjunction.reflexive

∀A (A ∨ A ↔ A)
Proposition 1.26 disjunction.symmetrical

∀A,B ((A ∨ B) → B ∨ A)
Proposition 1.27 disjunction.associative

∀A,B,C ((A ∨ B ∨ C) → A ∨ B ∨ C)
Proposition 1.28 conjunction.reflexive

∀A (A ∧ A ↔ A)
Proposition 1.29 conjunction.symmetrical

∀A,B (A ∧ B → B ∧ A)
Proposition 1.30 conjunction.associative

∀A,B,C (A ∧ B ∧ C → A ∧ B ∧ C)
Proposition 1.31 disj_conj.distributive

∀A,B,C ((A ∧ B ∨ A ∧ C) → A ∧ (B ∨ C))
Proposition 1.32 conj_disj.distributive

∀A,B,C ((A ∨ B) ∧ (A ∨ C) → A ∨ B ∧ C)
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1.1.7 Classical logic.
Axiom 1.33 peirce_law

∀X,Y (((X → Y) → X) → X)

If you want to do intuitionnistic logic only, do not use this axiom ! You
can always use the command depend to see if a theorem uses the Peirce’s
law

Proposition 1.34 not_idempotent

∀X ((¬) ((¬) X) → X)

Proposition 1.35 absurd

∀X (((¬) X → X) → X)

Proposition 1.36 contradiction

∀X ((¬) ((¬) X) → X)

Proposition 1.37 excluded_middle

∀X (X ∨ (¬) X)

Proposition 1.38 arrow_left

∀A,B,X (((¬) A → X) → (B → X) → (A → B) → X)

arrow_left added as elimination rule (abbrev: 3 , options: -n $→ )

Proposition 1.39 forall_left

∀A ∀X ∀x ((A x → X) → ∀x A x → X)

forall_left added as elimination rule (abbrev: n , options: -n )

1.1.8 Definite description.
Constant 1.40

Δ : ( ’a → prop ) → ’aDef

Axiom 1.41 Def.axiom definite description axiom

∀P (∃!z P z → P (Δx
P x))

Def.axiom added as introduction rule (abbrev: Def , options: -o 10.0 -t )

Proposition 1.42 Def.lemma

∀P (∃!z P z → ∀x∶P (Δy
P y) = x)
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1.1.9 Contraposition.
Proposition 1.43 contraposition

∀A,B ((¬) B → (¬) A) = (A → B)

Proposition 1.44 equivalence.contraposition

∀A,B ((¬) B ↔ (¬) A) = (A ↔ B)

Definition 1.45

List of theorems: contrapose := contraposition equivalence.contraposition

For reasoning by contraposition (classical reasoning) you can use: ”rewrite
-p 0 -r contrapose.” For the intuitionnistic instance of reasoning by contra-
position: rewrite contrapose.

1.1.10 De Morgan Laws.
Proposition 1.46 conjunction.demorgan

∀X,Y (¬) (X ∧ Y) = ((¬) X ∨ (¬) Y)

Proposition 1.47 conjarrowleft.demorgan

∀X,Y (¬) (X ∧ Y) = (X → (¬) Y)

Proposition 1.48 conjarrowright.demorgan

∀X,Y (¬) (X ∧ Y) = (Y → (¬) X)

Proposition 1.49 disjunction.demorgan

∀X,Y (¬) (X ∨ Y) = ((¬) X ∧ (¬) Y)

Proposition 1.50 arrow.demorgan

∀X,Y (¬) (X → Y) = (X ∧ (¬) Y)

Proposition 1.51 negation.demorgan

∀X (¬) ((¬) X) = X

Proposition 1.52 forall.demorgan

∀X (¬) (∀x X x) = ∃x (¬) (X x)
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Proposition 1.53 exists.demorgan

∀X (¬) (∃x X x) = ∀x (¬) (X x)

Definition 1.54

List of theorems: demorgan := disjunction.demorgan forall.demorgan
arrow.demorgan exists.demorgan conjunction.demorgan negation.demorgan

Definition 1.55

List of theorems: demorganl := disjunction.demorgan forall.demorgan
arrow.demorgan exists.demorgan conjarrowleft.demorgan

negation.demorgan

Definition 1.56

List of theorems: demorganr := disjunction.demorgan forall.demorgan
arrow.demorgan exists.demorgan conjarrowright.demorgan

negation.demorgan

Definition 1.57

Letx= e inside e′ := e′Let x = e inside e'

Proposition 1.58 and_arrow

∀X,Y,Z ((X ∧ Y → Z) → X → Y → Z)

Proposition 1.59 exists_arrow

∀X ∀Z ((∃x X x → Z) → ∀x∶X Z)
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Chapter 2

Binary relations

2.1 Usual definitions on binary relations.
Definition 2.1

transitive D R := ∀a,b,c∶D (R a b → R b c → R a c) transitive D R

Definition 2.2

reflexive D R := ∀a∶D R a a reflexive D R

Definition 2.3

anti.reflexive D R := ∀a∶D (¬) (R a a) anti.reflexive D R

Definition 2.4

symmetric D R := ∀a,b∶D (R a b → R b a) symmetric D R

Definition 2.5

anti.symmetric D R := ∀a,b∶D (R a b ∧ R b a → a = b) anti.symmetric D R

Definition 2.6

preorder D R := transitive D R ∧ reflexive D R preorder D R

Definition 2.7

strict.order D R := transitive D R ∧ anti.reflexive D R strict.order D R

Definition 2.8

order D R := preorder D R ∧ anti.symmetric D R order D R

Definition 2.9
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equivalence D R := preorder D R ∧ symmetric D Requivalence D R

Definition 2.10

total D R := ∀x,y∶D (R x y ∨ R y x)total D R

Definition 2.11

strict.total D R := ∀x,y∶D (R x y ∨ R y x ∨ x = y)strict.total D R

Definition 2.12

well.founded D R := ∀X (∀a∶D (∀b∶D (R b a → X b) → X a) → ∀a∶D X a)
well.founded D R

Definition 2.13

well.order D R := strict.order D R ∧ strict.total D R ∧ well.founded D Rwell.order D R

Fact 2.14 Some properties of well founded relations.

• inf.well_founded: Any subset has an inf element

∀D ∀R∶(well.founded D) ∀X
(∃x∶D X x → ∃x∶D (X x ∧ ∀y∶D (X y → (¬) (R y x))))

0written by: Christophe Raffalli, Paul Roziere (Equipe de Logique, Université Cham-
béry, Paris VII)
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Chapter 3

The boolean

3.1 Properties of basic operations and predicates
on the booleans.

3.1.1 Basic definitions.
To define the booleans, we extend the language with two contant symbols
TT and FF. Then the booleans are defined by the following predicate IB x:

Definition 3.1 Booleans

• IB x := ∀X (X (⊤) → X (⊥) → X x) B x

3.1.2 The introduction rules for IB.
Fact 3.2 ⊤ and ⊥ are booleans

• True.total.B:
IB (⊤)

• False.total.B:
IB (⊥)

True.total.B added as introduction rule (abbrev: True , options: -i -c )
False.total.B added as introduction rule (abbrev: False , options: -i -c )

Fact 3.3 is_True.total.B

∀b (b → IB b)

is_True.total.B added as introduction rule (abbrev: is_True , options: )
0written by: Christophe Raffalli, Paul Roziere (Paris VII, Paris XII university)
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Fact 3.4 is_False.total.B

∀b∶(¬) IB b

is_False.total.B added as introduction rule (abbrev: is_False , options:
)

3.1.3 Elimination rules for IB.
Fact 3.5 case.B Case analysis on IB

∀X ∀b (((¬) b → b = (⊥) → X (⊥)) → (b → b = (⊤) → X (⊤)) →
IB b → X b

)

case.B added as elimination rule (abbrev: case , options: )
These theorems are added respectively as introduction and elimination

rules for the predicate IB with the given abbreviation (This implies for in-
stance that elim True.total.B is equivalent to intro True). Moreover
the last rule is invertible and the third rule is not necessary for complete-
ness.

3.1.4 Left rules for IB.
Proposition 3.6 True_not_False.B ⊤ and ⊥ are distinct

(⊤) ≠ ⊥

Fact 3.7 True_not_False_left.B The previous proposition as left rule

∀X ((⊤) = (⊥) → X)

True_not_False_left.B added as elimination rule (abbrev: True_not_False ,
options: -i -n )

Fact 3.8 False_not_True_left.B The previous proposition as left rule

∀X ((⊥) = (⊤) → X)

False_not_True_left.B added as elimination rule (abbrev: False_not_True ,
options: -i -n )

Fact 3.9 equal_True_left.B Left rule for True

∀X,b ((b → X) → b = (⊤) → X)

equal_True_left.B added as elimination rule (abbrev: equal_True_left ,
options: -i -n )
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Fact 3.10 True_equal_left.B Left rule for True

∀X,b ((b → X) → (⊤) = b → X)

True_equal_left.B added as elimination rule (abbrev: left_True , options:
-i -n )

Fact 3.11 equal_False_left.B Left rule for False

∀X,b (((¬) b → X) → b = (⊥) → X)

equal_False_left.B added as elimination rule (abbrev: equal_False_left ,
options: -i -n )

Fact 3.12 False_equal_left.B Left rule for False

∀X,b (((¬) b → X) → (⊥) = b → X)

False_equal_left.B added as elimination rule (abbrev: left_False , op-
tions: -i -n )

Fact 3.13 elim.B Left rule for IB

∀X,b ((b → b = (⊤) → X) → ((¬) b → b = (⊥) → X) → IB b → X)

elim.B added as elimination rule (abbrev: elim , options: -n )

Theorem 3.14 B_is_excluded_middle.B

∀x (IB x ↔ x ∨ (¬) x)

3.1.5 Boolean equality.

Using the previous axiom, we can prove (instuitionistically) the decidability
of the equality on booleans.

Fact 3.15 eq_dec.B
equal.decidable IB

eq_dec.B added as introduction rule (abbrev: B , options: -i -t )
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3.2 Definition of functions on booleans.
3.2.1 if ... then ... else ...
Definition 3.16 graph of a function defined by a test

ifP b x y z := b ∧ z = x ∨ (¬) b ∧ z = yifP b x y z

Definition 3.17 function defined by a test

if b then x else y := Δz
ifP b x y zif b then x else y

Using the definite description operator, we can introduce a new function
symbol if b then x else y.

Fact 3.18 Basic properties of $if
• True.if.B:

∀X ∀c1,c2 (X → if X then c1 else c2 = c1)

True.if.B added as equation

• False.if.B:

∀X ∀c1,c2 ((¬) X → if X then c1 else c2 = c2)

False.if.B added as equation

An alternative would be to add if b then x else y as a constant and re-
place the previous theorems by axioms. We prefer to limit the number of
axioms because this should help to detect a contradiction in our assump-
tions. Moreover, we are not replacing two axioms by a more powerful one,
because the definite description principle is a conservative axiom.

Fact 3.19 total.if.B Totality of $if

∀X ∀b∶IB ∀c1,c2∶X X (if b then c1 else c2)

Fact 3.20 case.if.B Totality of $if a better version

∀X ∀b∶IB ∀c1,c2 ((b → X c1) → ((¬) b → X c2) → X (if b then c1 else c2))

case.if.B added as introduction rule (abbrev: if , options: -t )
The case.if.B theorem can not be added as an introduction rule because it

would be an introduction rule for any predicate ! Nevertheless it is added as
a ”totality rule” (using the command new_intro -t. This tells the trivial
tactic to use it when the goal is of the form P (if b then c1 else c2) with P
atomic. This is useful to prove that functions using $if are total.
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3.2.2 Boolean functions.
Fact 3.21 We prove the totality of these functions

• and.total.B:
∀x,y∶IB IB (x ∧ y)

• or.total.B:
∀x,y∶IB IB (x ∨ y)

• neg.total.B:
∀x∶IB IB ((¬) x)

and.total.B added as introduction rule (abbrev: and , options: -i -t )
or.total.B added as introduction rule (abbrev: or , options: -i -t )
neg.total.B added as introduction rule (abbrev: neg , options: -i -t )

Fact 3.22 The equation for ∧
• and.lTrue.B:

∀x ((⊤) ∧ x) = x

• and.rTrue.B:
∀x∶IB (x ∧ ⊤) = x

• and.lFalse.B:
∀x ((⊥) ∧ x) = ⊥

• and.rFalse.B:
∀x∶IB (x ∧ ⊥) = ⊥

and.rFalse.B added as equation

Fact 3.23 The equation for ∨
• or.lFalse.B:

∀x ((⊥) ∨ x) = x

• or.rFalse.B:
∀x∶IB (x ∨ ⊥) = x

• or.lTrue.B:
∀x ((⊤) ∨ x) = ⊤

• or.rTrue.B:
∀x∶IB (x ∨ ⊤) = ⊤

or.rFalse.B added as equation
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Fact 3.24 The equation for ¬

• neg.True.B:
(¬) (⊤) = ⊥

• neg.False.B:
(¬) (⊥) = ⊤

neg.False.B added as equation
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Chapter 4

Natural numbers : second
order definition

4.1 Basic definitions.
To define the natural numbers, we extend the language with one contant
symbol 0 and one unary function symbol S x. Then the natural numbers are
defined by the following predicate IN x

Definition 4.1 Church integers

• nat

• 0 : nat N0

• S x : nat → nat S x

• IN x := ∀X (X 0 → ∀y∶X X (S y) → X x) N x

4.1.1 Introduction rules for IN.
Fact 4.2 N0.total.N 0 is an integer

IN 0

Fact 4.3 S.total.N The successor function S is total

∀x∶IN IN (S x)

N0.total.N added as introduction rule (abbrev: N0 , options: -i -c )
S.total.N added as introduction rule (abbrev: S , options: -i -c )

0written by: Christophe Raffalli, Paul Roziere (Paris VII, Paris XII university)
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4.1.2 Elimination rules for IN.
Induction on natural number as an elimination rule.

Fact 4.4 rec.N Induction on IN

∀X (X 0 → ∀y∶IN (X y → X (S y)) → ∀x∶IN X x)

Elimination by case on IN.

Fact 4.5 case.N case on IN

∀x∶IN (x = 0 ∨ ∃z∶IN x = S z)

Fact 4.6 case_left.N

∀X ∀x ((x = 0 → X 0) → ∀y∶IN (x = S y → X (S y)) → IN x → X x)

case_left.N added as elimination rule (abbrev: case , options: -n )
rec.N added as elimination rule (abbrev: rec , options: )

The introduction rules are added with the command new_intro -c. The
option -c indicates that 0 and S are constructors and the trivial tactic will
try to use these rules when the goal is of the form P 0 ∨ P (S t) even if P is
a unification variable.

The elimination rules are added with the command new_elim using the
option -n for case.N. This tells PhoX that this second rule is not necessary
for completeness.

The abbreviations are given with the rules. For instance, elim case.N with H
is equivalent to elim H with [case] and elim N0.total.N is equivalent
to intro N0.

4.1.3 left rules for = on IN
We add usual axioms of Peano Arithmetic.

Axiom 4.7

• N0_not_S.N: zero and successor distinct

∀x∶IN 0 ≠ S x

• S_inj.N: successor injective

∀x,y∶IN (S x = S y → x = y)

We also prove the following left rules for natural numbers (the first one
is an axiom ).
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Fact 4.8 Showing that integers are distincts.

• S_not_N0.N:
∀x∶IN S x ≠ 0

S_not_N0.N added as elimination rule (abbrev: S_not_N0 , options:
-i -n )

N0_not_S.N added as elimination rule (abbrev: N0_not_S , options:
-i -n )

• S_inj_left.N:

∀X ∀x,y∶IN ((x = y → X) → S x = S y → X)

S_inj_left.N added as elimination rule (abbrev: S_inj , options:
-i -n )

• x_not_Sx.N:
∀x∶IN x ≠ S x

x_not_Sx.N added as elimination rule (abbrev: x_not_Sx , options:
-i -n )

• Sx_not_x.N:
∀x∶IN S x ≠ x

Sx_not_x.N added as elimination rule (abbrev: Sx_not_x , options:
-i -n )

4.2 Definition of functions on natural numbers.
Warning: In this section we define basic functions on natural numbers.
These definitions are included in the module nat.phx. You can also use
the module nat_ax.phx where they are replaced by axioms. In general, you
should use the first module. But if you want to use theorems on natural
numbers on a structure isomorphic to natural numbers (like the positive
integers!), then you should use the module nat_ax.phx.

4.2.1 Definition by induction.
Definition 4.9 graph of a function defined by induction

DEF𝑟𝑒𝑐
IN a f n z := ∀X (X 0 a → ∀y∶IN ∀r∶(X y) X (S y) (f y r) → X n z) def_rec_P.N a f n z

The predicate DEF𝑟𝑒𝑐
IN a f x z defines by induction the graph of the func-

tion which to x associate z using a as base case (when x = 0) and f for the
successor case.
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Definition 4.10 function defined by induction

def𝑟𝑒𝑐
IN a f n := Δz

DEF𝑟𝑒𝑐
IN a f n zdef_rec.N a f n

Using the definite description, we can introduce a function symbol def𝑟𝑒𝑐
IN a f

for any definition by induction on natural numbers.

Fact 4.11 Basic properties of def𝑟𝑒𝑐
IN

• def_rec.N0.N:
∀f ∀a def𝑟𝑒𝑐

IN a f 0 = a

def_rec.N0.N added as equation

• def_rec.S.N:

∀f ∀a ∀n∶IN def𝑟𝑒𝑐
IN a f (S n) = f n (def𝑟𝑒𝑐

IN a f n)

def_rec.S.N added as equation

The previous proposition is proved using properties of the definite de-
scription operator.

Fact 4.12 def_rec.total.N Totality of a function defined by induction

∀X ∀f∶(IN ⇒ X ⇒ X) ∀a∶X ∀n∶IN X (def𝑟𝑒𝑐
IN a f n)

def_rec.total.N added as introduction rule (abbrev: rec_def , options:
-t )

Application : In the following section we will define by induction addi-
tion, multiplication and exponentiation

4.3 Some very usual functions.
4.3.1 Addition.
Definition 4.13 addition

x + y := def𝑟𝑒𝑐
IN y 𝜆n,r (S r) xx + y

Fact 4.14 Basic properties

• add.lN0.N:
∀y∶IN 0 + y = y

add.lN0.N added as equation

• add.lS.N:
∀x,y∶IN S x + y = S (x + y)

add.lS.N added as equation
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4.3.2 Multiplication.

Definition 4.15 multiplication

x.y := def𝑟𝑒𝑐
IN 0 𝜆n,r (r + y) x × y

Fact 4.16 Basic properties

• mul.lN0.N:
∀y∶IN 0.y = 0

mul.lN0.N added as equation

• mul.lS.N:
∀x,y∶IN S x.y = x.y + y

mul.lS.N added as equation

4.3.3 Exponentiation.

Definition 4.17

1 := S 0 N1

N1.total.N added as introduction rule (abbrev: N1 , options: -i -t )

Definition 4.18 exponentiation

xy := def𝑟𝑒𝑐
IN 1 𝜆n,r (x.r) y x ^ y

Fact 4.19 Basic properties

• exp.rN0.N:
∀x∶IN x0 = 1

exp.rN0.N added as equation

• exp.rS.N:
∀x,y∶IN xS y = xy.x

exp.rS.N added as equation
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4.3.4 Predecessor.
We will define the predecessor as a partial function (if we define it as a total
function, we can not make it coincide with the predecessor on integer when
we consider natural numbers as a ⊂ of integers).

Definition 4.20 graph of predecessor

predP x z := IN z ∧ x = S zpredP x z

Lemma 4.21 predPunique predP defines a partial function

∀x∶IN ∃!z predP (S x) z

Using the definite description operator, we can define the predecessor as
follows.

Definition 4.22 predecessor

P n := Δz
predP n zP n

Fact 4.23 pred.rS.N Basic property of predecessor

∀n∶IN P S n = n

pred.rS.N added as equation

4.3.5 Subtraction.
Definition 4.24 subtraction

x − y := def𝑟𝑒𝑐
IN x 𝜆n,r (P r) yx - y

Definition 4.25 inferior ∨ equal

x ≤ y := ∀X (X x → ∀z∶X X (S z) → X y)x ≤ y

see module nat_ax.phx, section ordering, for definitions of orders on
natural numbers

Fact 4.26 Basic properties

• sub.rN0.N:
∀x∶IN x − 0 = x

sub.rN0.N added as equation

• sub.S.N:
∀x,y∶IN (y ≤ x → S x − S y = x − y)

sub.S.N added as equation
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4.4 Properties of basic operations and predicates
on IN.

4.4.1 Some constants.
Definition 4.27

1 := S 0 N1

Fact 4.28 N1.total.N
IN 1

N1.total.N added as introduction rule (abbrev: N1 , options: -i -t )

Definition 4.29

2 := S 1 N2

Fact 4.30 N2.total.N
IN 2

N2.total.N added as introduction rule (abbrev: N2 , options: -i -t )

Definition 4.31

3 := S 2 N3

Fact 4.32 N3.total.N
IN 3

N3.total.N added as introduction rule (abbrev: N3 , options: -i -t )

Definition 4.33

4 := S 3 N4

Fact 4.34 N4.total.N
IN 4

N4.total.N added as introduction rule (abbrev: N4 , options: -i -t )

Definition 4.35

5 := S 4 N5

Fact 4.36 N5.total.N
IN 5

N5.total.N added as introduction rule (abbrev: N5 , options: -i -t )
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Definition 4.37

6 := S 5N6

Fact 4.38 N6.total.N
IN 6

N6.total.N added as introduction rule (abbrev: N6 , options: -i -t )

Definition 4.39

7 := S 6N7

Fact 4.40 N7.total.N
IN 7

N7.total.N added as introduction rule (abbrev: N7 , options: -i -t )

Definition 4.41

8 := S 7N8

Fact 4.42 N8.total.N
IN 8

N8.total.N added as introduction rule (abbrev: N8 , options: -i -t )

Definition 4.43

9 := S 8N9

Fact 4.44 N9.total.N
IN 9

N9.total.N added as introduction rule (abbrev: N9 , options: -i -t )

Definition 4.45

10 := S 9N10

Fact 4.46 N10.total.N
IN 10

N10.total.N added as introduction rule (abbrev: N10 , options: -i -t )

Fact 4.47 some case elimination rules
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• case2.N:

∀X ∀x ((x = 0 → X 0) → (x = 1 → X 1) →
∀y∶IN (x = S S y → X (S S y)) → IN x → X x)

case2.N added as elimination rule (abbrev: case2 , options: -n )
case_left.N added as elimination rule (abbrev: case1 , options: )

• case3.N:

∀X ∀x
⎛⎜⎜⎜
⎝

(x = 0 → X 0) → (x = 1 → X 1) →
(x = 2 → X 2) →
∀y∶IN (x = S S S y → X (S S S y)) →
IN x → X x

⎞⎟⎟⎟
⎠

case3.N added as elimination rule (abbrev: case3 , options: -n )

4.4.2 Properties of addition on IN.
Constant 4.48

x + y : nat → nat → nat x + y

Axiom 4.49 axioms defining addition

• add.lN0.N:
∀y∶IN 0 + y = y

• add.lS.N:
∀x,y∶IN S x + y = S (x + y)

add.lN0.N added as equation
add.lS.N added as equation

These axioms are needed for axiomatic version of IN, and proved in
nat.phx.

Fact 4.50 add.total.N Totality of addition

∀x,y∶IN IN (x + y)

add.total.N added as introduction rule (abbrev: add , options: -i -t )
We add this theorem as a totality rule (using the command new_intro -t)

with the given abbreviation. Therefore we can use intro add instead of
elim add.total.N.

Fact 4.51 exchanging sides in the properties defining addition
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• add.rN0.N:
∀x∶IN x + 0 = x

add.rN0.N added as equation

• add.rS.N:
∀x,y∶IN x + S y = S (x + y)

add.rS.N added as equation

these facts are used to prove commutativity of addition.

Fact 4.52 add.commutative.N commutativity of addition

∀x,y∶IN x + y = y + x

add.commutative.N added as equation

Fact 4.53 add.associative.N Associativity of addition

∀x,y,z∶IN x + (y + z) = x + y + z

add.associative.N added as equation
added in both direction !
Following facts are useful for the performance of rewriting.

Fact 4.54 More on associativity and commutativity of addition

• add.ass_com_1.N:

∀x,y,z∶IN x + (y + z) = y + (x + z)

add.ass_com_1.N added as equation

• add.ass_com_2.N:

∀x,y,z∶IN x + (y + z) = z + (y + x)

add.ass_com_2.N added as equation

• add.ass_com_3.N:

∀x,y,z∶IN x + y + z = x + z + y

add.ass_com_3.N added as equation
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• add.ass_com_4.N:

∀x,y,z∶IN x + y + z = z + y + x

add.ass_com_4.N added as equation

Fact 4.55 Addition and constants
• add.rN1.N:

∀x∶IN x + 1 = S x

add.rN1.N added as equation

• add.lN1.N:
∀x∶IN 1 + x = S x

add.lN1.N added as equation

• add.rN2.N:
∀x∶IN x + 2 = S S x

add.rN2.N added as equation

• add.lN2.N:
∀x∶IN 2 + x = S S x

add.lN2.N added as equation

Fact 4.56 regularity of addition
• add.leq.N: left regularity of addition

∀x,y,y′∶IN (x + y = x + y′ → y = y′)

• add.leq_left.N: left regularity of addition, left side

∀X ∀x,y,y′∶IN ((y = y′ → X) → x + y = x + y′ → X)

add.leq_left.N added as elimination rule (abbrev: add.leq , options:
-i -rm -n )

• add.req.N: right regularity of addition

∀x,y,y′∶IN (y + x = y′ + x → y = y′)

• add.req_left.N: right regularity of addition, left side

∀X ∀x,y,y′∶IN ((y = y′ → X) → y + x = y′ + x → X)

add.req_left.N added as elimination rule (abbrev: add.req , options:
-i -rm -n )

added as invertible left rule.
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4.4.3 Properties of multiplication.
Constant 4.57

x.y : nat → nat → natx × y

Axiom 4.58 Axioms defining multiplication.

• mul.lN0.N:
∀y∶IN 0.y = 0

• mul.lS.N:
∀x,y∶IN S x.y = x.y + y

mul.lN0.N added as equation
mul.lS.N added as equation

These axioms are needed for axiomatic version of IN, and proved in
nat.phx

Fact 4.59 mul.total.N Totality of multiplication

∀x,y∶IN IN (x.y)

mul.total.N added as introduction rule (abbrev: mul , options: -i -t )
We add this theorem as a totality rule (using the command new_intro -t)

with the given abbreviation. Therefore we can use intro mul instead of
elim mul.total.N.

Fact 4.60 exchanging sides in the properties defining multiplication

• mul.rN0.N:
∀x∶IN x.0 = 0

mul.rN0.N added as equation

• mul.rS.N:
∀x,y∶IN x.S y = x.y + x

mul.rS.N added as equation

These facts are used to prove commutativity.

Fact 4.61 mul.commutative.N Commutativity of multiplication

∀x,y∶IN x.y = y.x
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mul.commutative.N added as equation
distributivity has to be proved before associativity

Fact 4.62 mul.left.distributive.N Left distributivity of multiplication on ad-
dition

∀x,y,z∶IN x.(y + z) = x.y + x.z

mul.left.distributive.N added as equation

Fact 4.63 mul.right.distributive.N Right distributivity of multiplication on
addition

∀x,y,z∶IN (y + z).x = y.x + z.x

mul.right.distributive.N added as equation

Fact 4.64 mul.associative.N Associativity of multiplication

∀x,y,z∶IN x.(y.z) = x.y.z

mul.associative.N added as equation
Following facts are useful for the performance of rewriting.

Fact 4.65 More on associativity and commutativity of multiplication

• mul.ass_com_1.N:

∀x,y,z∶IN x.(y.z) = y.(x.z)

mul.ass_com_1.N added as equation

• mul.ass_com_2.N:

∀x,y,z∶IN x.(y.z) = z.(y.x)

mul.ass_com_2.N added as equation

• mul.ass_com_3.N:
∀x,y,z∶IN x.y.z = x.z.y

mul.ass_com_3.N added as equation

• mul.ass_com_4.N:
∀x,y,z∶IN x.y.z = z.y.x

mul.ass_com_4.N added as equation

Fact 4.66 Multiplication and constants
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• mul.rN1.N: N1 right neutral for multiplication

∀x∶IN x.1 = x

mul.rN1.N added as equation

• mul.lN1.N: N1 left neutral for multiplication

∀x∶IN 1.x = x

mul.lN1.N added as equation

• mul.rN2.N:
∀x∶IN x.2 = x + x

mul.rN2.N added as equation

• mul.lN2.N:
∀x∶IN 2.x = x + x

mul.lN2.N added as equation

Fact 4.67 mul.integr.N Integrity for multiplication in IN

∀x,y∶IN (x.y = 0 → x = 0 ∨ y = 0)

Fact 4.68 mul.lintegr.N Integrity for multiplication in IN

∀x,y∶IN (x.y = 0 → y ≠ 0 → x = 0)

Fact 4.69 mul.rintegr.N Integrity for multiplication in IN

∀x,y∶IN (x.y = 0 → x ≠ 0 → y = 0)

Fact 4.70 mul.integr_left.N Integrity for multiplication in IN as left rule

∀X ∀x,y∶IN ((x = 0 → X) → (y = 0 → X) → x.y = 0 → X)

mul.integr_left.N added as elimination rule (abbrev: mul.integr , options:
-i -n )

Fact 4.71 mul.integr_left′ Integrity for multiplication in IN as left rule

∀X ∀x,y∶IN ((x = 0 → X) → (y = 0 → X) → 0 = x.y → X)

mul.integr_left′ added as elimination rule (abbrev: mul.integr' , options:
-i -n )
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Fact 4.72 regularity of multiplication

• mul.leq.N: left regularity of multiplication

∀y,y′,x∶IN (x ≠ 0 → x.y = x.y′ → y = y′)

• mul.leq_left.N: left regularity of multiplication on left side

∀X ∀x,y,y′∶IN ((y = y′ → X) → x ≠ 0 → x.y = x.y′ → X)

mul.leq_left.N added as elimination rule (abbrev: mul.leq , options:
-i -rm -n )

added as invertible left rule.

• mul.req.N: right regularity of multiplication

∀x,y,y′∶IN (x ≠ 0 → y.x = y′.x → y = y′)

• mul.req_left.N: right regularity of multiplication on left side

∀X ∀x,y,y′∶IN ((y = y′ → X) → x ≠ 0 → y.x = y′.x → X)

mul.req_left.N added as elimination rule (abbrev: mul.req , options:
-i -rm -n )

added as invertible left rule.

4.4.4 Properties of exponentiation.
Constant 4.73

xy : nat → nat → nat x ^ y

Axiom 4.74 Axioms defining exponentiation

• exp.rN0.N:
∀x∶IN x0 = 1

• exp.rS.N:
∀x,y∶IN xS y = xy.x

exp.rN0.N added as equation
exp.rS.N added as equation

These axioms are needed for axiomatic version of IN, and proved in
nat.phx
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Fact 4.75 exp.total.N totality of the exponentiation

∀x,y∶IN IN (xy)

exp.total.N added as introduction rule (abbrev: exp , options: -i -t )
We add this theorem as a totality rule (using the command new_intro -t)

with the given abbreviation. Therefore we can use intro exp instead of
elim exp.total.N.

Fact 4.76 exp.left.distributive.N left ”distributivity” of exponentiation

∀x,y,z∶IN xy + z = xy.xz

exp.left.distributive.N added as equation

Fact 4.77 properties of exponentiation on multiplication

• exp.composition.N: product in exposant

∀x,y,z∶IN xy.z = (xy)z

exp.composition.N added as equation

• exp.right.distributive.N: exponentiation of a product

∀x,y,z∶IN (x.y)z = xz.yz

exp.right.distributive.N added as equation

Fact 4.78 properties of exponentiation with 1

• exp.rN1.N: 1 in exposant

∀x∶IN x1 = x

exp.rN1.N added as equation

• exp.lN1.N: exponentiation of 1

∀x∶IN 1x = 1

exp.lN1.N added as equation
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4.4.5 Some more constants
Definition 4.79

20 := 10 + 10 N20

Fact 4.80 N20.total.N
IN 20

N20.total.N added as introduction rule (abbrev: N20 , options: -i -t )

Definition 4.81

30 := 10 + 20 N30

Fact 4.82 N30.total.N
IN 30

N30.total.N added as introduction rule (abbrev: N30 , options: -i -t )

Definition 4.83

40 := 10 + 30 N40

Fact 4.84 N40.total.N
IN 40

N40.total.N added as introduction rule (abbrev: N40 , options: -i -t )

Definition 4.85

50 := 10 + 40 N50

Fact 4.86 N50.total.N
IN 50

N50.total.N added as introduction rule (abbrev: N50 , options: -i -t )

Definition 4.87

60 := 10 + 50 N60

Fact 4.88 N60.total.N
IN 60

N60.total.N added as introduction rule (abbrev: N60 , options: -i -t )

Definition 4.89
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70 := 10 + 60N70

Fact 4.90 N70.total.N
IN 70

N70.total.N added as introduction rule (abbrev: N70 , options: -i -t )

Definition 4.91

80 := 10 + 70N80

Fact 4.92 N80.total.N
IN 80

N80.total.N added as introduction rule (abbrev: N80 , options: -i -t )

Definition 4.93

90 := 10 + 80N90

Fact 4.94 N90.total.N
IN 90

N90.total.N added as introduction rule (abbrev: N90 , options: -i -t )

Definition 4.95

100 := 10 + 90N100

Fact 4.96 N100.total.N
IN 100

N100.total.N added as introduction rule (abbrev: N100 , options: -i -t )

Definition 4.97

200 := 100 + 100N200

Fact 4.98 N200.total.N
IN 200

N200.total.N added as introduction rule (abbrev: N200 , options: -i -t )

Definition 4.99

300 := 100 + 200N300

Fact 4.100 N300.total.N
IN 300
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N300.total.N added as introduction rule (abbrev: N300 , options: -i -t )

Definition 4.101

400 := 100 + 300 N400

Fact 4.102 N400.total.N
IN 400

N400.total.N added as introduction rule (abbrev: N400 , options: -i -t )

Definition 4.103

500 := 100 + 400 N500

Fact 4.104 N500.total.N
IN 500

N500.total.N added as introduction rule (abbrev: N500 , options: -i -t )

Definition 4.105

600 := 100 + 500 N600

Fact 4.106 N600.total.N
IN 600

N600.total.N added as introduction rule (abbrev: N600 , options: -i -t )

Definition 4.107

700 := 100 + 600 N700

Fact 4.108 N700.total.N
IN 700

N700.total.N added as introduction rule (abbrev: N700 , options: -i -t )

Definition 4.109

800 := 100 + 700 N800

Fact 4.110 N800.total.N
IN 800

N800.total.N added as introduction rule (abbrev: N800 , options: -i -t )

Definition 4.111
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900 := 100 + 800N900

Fact 4.112 N900.total.N
IN 900

N900.total.N added as introduction rule (abbrev: N900 , options: -i -t )

Definition 4.113

1000 := 100 + 900N1000

Fact 4.114 N1000.total.N
IN 1000

N1000.total.N added as introduction rule (abbrev: N1000 , options: -i -t )

4.4.6 Ordering on N.
Definition 4.115 ordering relations on natural numbers

• x ≤ y := ∀X (X x → ∀z∶X X (S z) → X y)x ≤ y

• x < y := S x ≤ yx < y

• x ≥ y := y ≤ xx ≥ y

• x > y := y < xx > y

Now we will prove some properties of these ordering relations. In fact
we will only need to prove properties about [ ≤] and a few properties about
[ <] as this is enough for reasonning.

Properties of ≤
Fact 4.116 introduction rules for ≤

• lesseq.refl.N:
∀x∶IN x ≤ x

• lesseq.lN0.N:
∀x∶IN 0 ≤ x

• lesseq.lS.N:
∀x∶IN ∀y (x ≤ y → S x ≤ S y)

• lesseq.rS.N:
∀x∶IN ∀y (x ≤ y → x ≤ S y)
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• lesseq.Sl.N:
∀x,y∶IN (S x ≤ y → x ≤ y)

lesseq.rS.N added as introduction rule (abbrev: rS , options: )
lesseq.lS.N added as introduction rule (abbrev: lS , options: -i )
lesseq.lN0.N added as introduction rule (abbrev: lN0 , options: -i )
lesseq.refl.N added as introduction rule (abbrev: refl , options: -i )

Fact 4.117 elimination rules for ≤

• lesseq.rec.N:

∀X ∀x,y∶IN (X x → ∀z∶IN (x ≤ z → X z → X (S z)) →
x ≤ y → X y )

• lesseq.ltrans.N:

∀x∶IN ∀y,z (x ≤ y → y ≤ z → x ≤ z)

• lesseq.rtrans.N:

∀x∶IN ∀y,z (y ≤ z → x ≤ y → x ≤ z)

lesseq.rec.N added as elimination rule (abbrev: rec , options: -n )
lesseq.ltrans.N added as elimination rule (abbrev: 2 , options: -t $≤ )
lesseq.rtrans.N added as elimination rule (abbrev: 2 , options: -t $≤ )

Fact 4.118 Eliminating S both sides of ≤ in hypothesis

• lesseq.S_inj.N:
∀x,y∶IN (S x ≤ S y → x ≤ y)

• lesseq.S_inj_left.N:

∀X ∀x,y∶IN ((x ≤ y → X) → S x ≤ S y → X)

lesseq.S_inj_left.N added as elimination rule (abbrev: S_inj , op-
tions: -i -rm -n )
added as invertible left rule.

Fact 4.119 Eliminating ≤ in hypothesis

• lesseq.rN0.N:
∀x∶IN (x ≤ 0 → x = 0)
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• lesseq.rN0_left.N:

∀X ∀x∶IN ((x = 0 → X) → x ≤ 0 → X)

lesseq.rN0_left.N added as elimination rule (abbrev: rN0 , options:
-i -rm -n )

added as invertible left rule.

• lesseq.or_eq_S.N:

∀x,y∶IN (x ≤ S y → x ≤ y ∨ x = S y)

• lesseq.or_eq_S_left.N:

∀X ∀x,y∶IN ((x ≤ y → X) → (x = S y → X) →
x ≤ S y → X )

lesseq.or_eq_S_left.N added as elimination rule (abbrev: or_eq_S ,
options: -i -n )
added as invertible left rule.

The last properties allows to replace [x ≤ Nn] where n is some integer
by x= N0 ∨ ... x = Nn. With the new invertible left rules, properties like
[∀ x :N (x ≤ N2 → x= N0 ∨ x= N1 ∨ x =N2)] become provable with tactic
trivial.

Fact 4.120 lesseq.anti_sym.N antisymmetry of lesseq on N

∀x,y∶IN (x ≤ y → y ≤ x → x = y)

Fact 4.121 some other left rules for ≤

• lesseq.Sx_x.N:
∀x∶IN (¬) (S x ≤ x)

lesseq.Sx_x.N added as elimination rule (abbrev: Sx_x , options:
-i -n )

added as invertible left rule.

• lesseq.rN1.N:
∀x∶IN (¬) (S x ≤ 0)

lesseq.rN1.N added as elimination rule (abbrev: rN1 , options: -i -n )
added as invertible left rule.
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• lesseq.S_is_S.N:

∀x,y∶IN (S x ≤ y → ∃z∶IN (y = S z ∧ x ≤ z))

• lesseq.S_is_S_left.N:

∀X ∀x,y∶IN (∀z∶IN (y = S z → x ≤ z → X) → S x ≤ y →
X

)

lesseq.S_is_S_left.N added as elimination rule (abbrev: S_is_S , op-
tions: -i -o 2.0 -rm -n )
added as invertible left rule.

Fact 4.122 Variations about the totality of lesseq

• lesseq.case1.N:
∀x,y∶IN (x ≤ y ∨ y < x)

• lesseq.case2.N:

∀x,y∶IN (x ≤ y → x = y ∨ x < y)

• lesseq.case3.N:

∀x,y∶IN (x < y ∨ x = y ∨ y < x)

• lesseq.total.N:
∀x,y∶IN (x ≤ y ∨ y ≤ x)

• rlesseq.total.N:
∀x,y∶IN (x < y ∨ y ≤ x)

• less.case.N:

∀Q ∀x,y∶IN ((x < y → Q) → (x = y → Q) →
(y < x → Q) → Q )

• lesseq.case.N:

∀Q ∀x,y∶IN ((x = y → Q) → (x < y → Q) → x ≤ y → Q)

lesseq.case.N added as elimination rule (abbrev: case , options: -n )
less.case.N is nothing more than a version of lesseq.case3.N with a ternary

disjunction

Fact 4.123 relationships between <, ≤, >, ≥
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• less.imply.lesseq.N:

∀x,y∶IN (x < y → x ≤ y)

• lesseq.contradiction.N:

∀x,y∶IN (¬) (x < y ∧ y ≤ x)

• lesseq.imply.not.greater.N:

∀x,y∶IN (x ≤ y → (¬) (y < x))

• not.greater.imply.lesseq.N:

∀x,y∶IN ((¬) (x < y) → y ≤ x)

• less.imply.not.lesseq.N:

∀x,y∶IN (x < y → (¬) (y ≤ x))

less.imply.not.lesseq.N added as elimination rule (abbrev: less.imply.not.lesseq.N ,
options: -i -o 1.0 -n )

• not.lesseq.imply.less.N:

∀x,y∶IN ((¬) (x ≤ y) → y < x)

• less_S.imply.lesseq.N:

∀x,y∶IN (x < S y → x ≤ y)

• lesseq.imply.less_S.N:

∀x,y∶IN (x ≤ y → x < S y)

Fact 4.124 A slightly more powerful induction rule on ≤
• lesseq.rec2.N:

∀X ∀x,y∶IN
(X x → ∀z∶IN (x ≤ z → z < y → X z → X (S z)) →

x ≤ y → X y )

Fact 4.125 well_founded.N ≤ is well-founded on N, this is an induction
principle on N

well.founded IN <

well_founded.N added as elimination rule (abbrev: wf , options: -n )
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Ordering and equality

Definition 4.126
x 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<> y := x < y ∨ y < x x <> y

Fact 4.127 less_or_sup.neq.N <> implies ≠
∀x,y∶IN (x 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<> y → x ≠ y)

Totality of order become :

Fact 4.128 neq.less_or_sup.N ≠ implies 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<>
∀x,y∶IN (x ≠ y → x 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<> y)

Ordering and addition

Fact 4.129 Introducing operation + in a relation using ≤
• lesseq.ladd.N:

∀x,y∶IN x ≤ x + y

• lesseq.radd.N:
∀x,y∶IN x ≤ y + x

• lesseq.add.N:

∀x,y,x′,y′∶IN (x ≤ x′ → y ≤ y′ → x + y ≤ x′ + y′)

these three facts added as introduction rules
lesseq.add.N added as introduction rule (abbrev: lesseq.add , options: )
lesseq.ladd.N added as introduction rule (abbrev: lesseq.ladd , options:
-i )

lesseq.radd.N added as introduction rule (abbrev: lesseq.radd , options:
-i )

Fact 4.130 Eliminating operation + in a relation using ≤
• lesseq.ladd_left.N:

∀x,y,y′∶IN (x + y ≤ x + y′ → y ≤ y′)

• lesseq.ladd_rleft.N:

∀X ∀x,y,y′∶IN ((y ≤ y′ → X) → x + y ≤ x + y′ → X)

lesseq.ladd_left.N added as elimination rule (abbrev: ladd , options:
)

lesseq.ladd_rleft.N added as elimination rule (abbrev: laddi , op-
tions: -i -n )
added as invertible elimination rule.
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• lesseq.radd_left.N:

∀x,y,y′∶IN (y + x ≤ y′ + x → y ≤ y′)

• lesseq.radd_rleft.N:

∀X ∀x,y,y′∶IN ((y ≤ y′ → X) → y + x ≤ y′ + x → X)

lesseq.radd_left.N added as elimination rule (abbrev: radd , options:
)

lesseq.radd_rleft.N added as elimination rule (abbrev: raddi , op-
tions: -i -n )
added as invertible elimination rule.

Fact 4.131 From a relation with + to ≤
• ladd.lesseq.N:

∀x,y,z∶IN (x + y ≤ z → x ≤ z)

ladd.lesseq.N added as elimination rule (abbrev: laddo , options: )

• radd.lesseq.N:
∀x,y,z∶IN (x + y ≤ z → y ≤ z)

radd.lesseq.N added as elimination rule (abbrev: raddo , options: )

Ordering and multiplication

Fact 4.132 Introducing operation . in a relation using ≤
• lesseq.lmul.N:

∀x,y∶IN (y ≠ 0 → x ≤ x.y)

• lesseq.rmul.N:
∀x,y∶IN (y ≠ 0 → x ≤ y.x)

• lesseq.mul.N:

∀x,y,x′,y′∶IN (x ≤ x′ → y ≤ y′ → x.y ≤ x′.y′)

lesseq.mul.N added as introduction rule (abbrev: lesseq.mul , op-
tions: )
lesseq.lmul.N added as introduction rule (abbrev: lesseq.lmul , op-
tions: -i )
lesseq.rmul.N added as introduction rule (abbrev: lesseq.rmul , op-
tions: -i )
these three facts are addes as introduction rules
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Fact 4.133 Eliminating operation . in a relation using *≤
• lesseq.lmul_left.N:

∀y′,y,x∶IN (x ≠ 0 → x.y ≤ x.y′ → y ≤ y′)

• lesseq.lmul_rleft.N:

∀X ∀y′,y,x∶IN ((y ≤ y′ → X) → x ≠ 0 → x.y ≤ x.y′ → X)

lesseq.lmul_left.N added as elimination rule (abbrev: lmul , options:
)

lesseq.lmul_rleft.N added as elimination rule (abbrev: lmuli , op-
tions: -i -n )

• lesseq.rmul_left.N:

∀y′,y,x∶IN (x ≠ 0 → y.x ≤ y′.x → y ≤ y′)

added as invertible elimination rule.

• lesseq.rmul_rleft.N:

∀X ∀y′,y,x∶IN ((y ≤ y′ → X) → x ≠ 0 → y.x ≤ y′.x → X)

lesseq.rmul_left.N added as elimination rule (abbrev: rmul , options:
)

lesseq.rmul_rleft.N added as elimination rule (abbrev: rmuli , op-
tions: -i -n )
added as invertible elimination rule.

4.4.7 Predecessor, defined as a partial function on IN
Constant 4.134

P x : nat → nat P x

Axiom 4.135 axioms defining predecessor

• pred.rS.N:
∀x∶IN P S x = x

pred.rS.N added as equation

Fact 4.136 pred.total.N ”Totality” of predecessor (on its definition set)

∀x∶IN (0 < x → IN (P x))
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pred.total.N added as introduction rule (abbrev: P , options: -t )
This property is added as a totality rule (using the command new_intro -t)

with the given abbreviation. Therefore we can use intro pred instead of
elim pred.total.N

Fact 4.137 pred.lS.N

∀x∶IN (x ≠ 0 → S P x = x)

pred.lS.N added as equation
This property is added as a rewriting rule.

4.4.8 Subtraction, defined as a partial function on IN
Constant 4.138

x − y : nat → nat → natx - y

Axiom 4.139 axioms defining predecessor

• sub.rN0.N:
∀x∶IN x − 0 = x

• sub.S.N:
∀x,y∶IN (y ≤ x → S x − S y = x − y)

sub.rN0.N added as equation
sub.S.N added as equation

Fact 4.140 sub.total.N ”Totality” of subtraction, on its definition set

∀y,x∶IN (y ≤ x → IN (x − y))

sub.total.N added as introduction rule (abbrev: sub , options: -i -t )
This property is added as a totality rule (using the command new_intro -t)

with the given abbreviation. Therefore we can use intro sub instead of
elim sub

Fact 4.141 Some useful rewriting properties on subtraction

• sub.inv.N:
∀a∶IN a − a = 0

sub.inv.N added as equation

• sub.lS.N:
∀a,b∶IN (b ≤ a → S a − b = S (a − b))

sub.lS.N added as equation

48



• sub.rS.N:
∀a,b∶IN (b < a → a − S b = P (a − b))

sub.rS.N added as equation

• sub.lP.N:
∀a,b∶IN (b < a → P a − b = P (a − b))

sub.lP.N added as equation

• sub.rP.N:

∀a,b∶IN (0 < b → b ≤ a → a − P b = S (a − b))

sub.rP.N added as equation

• add.rsub.N:
∀b,a∶IN (b ≤ a → a − b + b = a)

add.rsub.N added as equation

• add.lsub.N:
∀b,a∶IN (b ≤ a → b + a − b = a)

add.lsub.N added as equation

• sub.radd.N:
∀b,a∶IN a + b − b = a

sub.radd.N added as equation

• sub.ladd.N:
∀b,a∶IN b + a − b = a

sub.ladd.N added as equation

• sub.less.inv.N:
∀a,b∶IN (a ≤ b → b − a ≤ b)

sub.less.inv.N added as introduction rule (abbrev: sub.inv , options:
-i )

• sub.rsub.N:
∀b,a∶IN (b ≤ a → a − (a − b) = b)

sub.rsub.N added as equation

all the last properties are added as rewriting rules.
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Fact 4.142 Properties on − and ≤
• lesseq.rsub.N:

∀a,b∶IN (b ≤ a → a − b ≤ a)

lesseq.rsub.N added as introduction rule (abbrev: rsub , options: -i )

• lesseq.S_rsub.N:

∀a,b∶IN (b > 0 → b ≤ a → S (a − b) ≤ a)

lesseq.S_rsub.N added as introduction rule (abbrev: S_rsub , options:
-i )

• lesseq.rrsub.N:

∀x,y,z∶IN (x ≤ y → z ≤ x → x − z ≤ y − z)

lesseq.rrsub.N added as introduction rule (abbrev: rrsub , options:
-i )

• lesseq.llsub.N:

∀x,y,z∶IN (y ≤ x → z ≤ y → x − y ≤ x − z)

lesseq.llsub.N added as introduction rule (abbrev: llsub , options:
-i )

• lesseq.sub_inc.N:

∀x,y,x′,y′∶IN (y ≤ x → x ≤ x′ → y′ ≤ y → x − y ≤ x′ − y′)

lesseq.sub_inc.N added as introduction rule (abbrev: sub_inc , op-
tions: )

• lesseq.sub_radd.N:

∀x,y,z∶IN (y ≤ x → x ≤ z + y → x − y ≤ z)

lesseq.sub_radd.N added as elimination rule (abbrev: 2 , options:
$≤ )

• lesseq.sub_ladd.N:

∀x,y,z∶IN (y ≤ x → z + y ≤ x → z ≤ x − y)

lesseq.sub_ladd.N added as elimination rule (abbrev: 2 , options:
$≤ )

These three properties are added as introduction rules.
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4.4.9 Some more properties on addition and subtraction in
IN

Fact 4.143 From addition to subtraction and converse
• add_to_sub.N:

∀a,b,c∶IN (a + b = c → a = c − b)

• sub_to_add.N:

∀a,b,c∶IN (b ≤ a → a − b = c → a = c + b)

Fact 4.144 Permutations in expressions using + and −
• sub.rass.N:

∀x,y,z∶IN (z ≤ y → x + (y − z) = x + y − z)

sub.rass.N added as equation

• sub.lass.N:

∀x,y,z∶IN (y + z ≤ x → x − (y + z) = x − y − z)

sub.lass.N added as equation

• sub.comm.N:

∀x,y,z∶IN (z ≤ x → x + y − z = x − z + y)

sub.comm.N added as equation

• sub.add.N:

∀x,y,z∶IN (y ≤ x + z → z ≤ y → x − (y − z) = x + z − y)

sub.add.N added as equation

All these properties are added as rewriting rules.

Subtraction and multiplication

Fact 4.145 Distributivity of multiplication on subtraction
• mul.lsub.dist.N:

∀x,y,z∶IN (x ≤ y → (y − x).z = y.z − x.z)

mul.lsub.dist.N added as equation
mul.rsub.dist.N added as equation

These two properties are added as rewriting rules
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4.4.10 Two intuitionnistic properties
Fact 4.146 odd_or_even.N All naturals are even ∨ odd

∀x∶IN ∃y∶IN (x = 2.y ∨ x = 1 + 2.y)

Fact 4.147 eq_dec.N equality on natural numbers is decidable

equal.decidable IN

eq_dec.N added as introduction rule (abbrev: N , options: -i -t )

4.4.11 Some more properties on multiplication and equality
Fact 4.148 rmul.neq_N1.N Product and 1

∀x,y∶IN (x 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<> 1 → y.x 𝜆𝑚𝑎𝑡ℎ𝑟𝑒𝑙<> 1)

Fact 4.149 rmul.eq_N1.N Product and 1

∀x,y∶IN (y.x = 1 → x = 1)

Fact 4.150 lmul.eq_N1.N Product and 1

∀x,y∶IN (x.y = 1 → x = 1)

Fact 4.151 mul.eq_N1.N Product and 1

∀X ∀x,y∶IN ((x = 1 → y = 1 → X) → x.y = 1 → X)

mul.eq_N1.N added as elimination rule (abbrev: mul.eq_N1 , options: -i -n )
this property is added as invertible left rule.

Definition 4.152

List of theorems: calcul.N := add.lN0.N add.lS.N add.rN0.N add.rS.N
mul.lN0.N mul.lS.N mul.rN0.N mul.rS.N exp.rN0.N exp.rS.N pred.rS.N
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Chapter 5

Products

5.1 Properties of basic operations and predicates
on the product.

5.1.1 Basic definitions
To define the product of two predicates, we extend the language with one
binary function symbol [ x, y ] . Then the product of two unary predicates
is defined by the following predicate A × B

Definition 5.1 Product

• product[’a,’b]

• x,y : ’a → ’b → ’a * ’b x , y

• (A × B) p := ∀X (∀a∶A ∀b∶B X (a,b) → X p) Product A B p

5.1.2 The introduction rule for ×
Fact 5.2 intro.Product Product introduction

∀A ∀B ∀x∶A ∀y∶B (A × B) (x,y)

intro.Product added as introduction rule (abbrev: i , options: -i -c )

5.1.3 The elimination rules for ×
Fact 5.3 elim.Product Product elimination

∀X ∀A ∀B ∀z (∀x∶A ∀y∶B (z = x,y → X) → (A × B) z → X)
0written by: Christophe Raffalli, Paul Roziere (Equipe de Logique, Université Cham-

béry, Paris VII)
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elim.Product added as elimination rule (abbrev: r , options: -i )

Axiom 5.4 injective.Product Product injective

∀x ∀y ∀x′ ∀y′ (x,y = x′,y′ → x = x′ ∧ y = y′)
Fact 5.5 injective_left.Product Product injective as left rule

∀X ∀x ∀y ∀x′ ∀y′ ((x = x′ → y = y′ → X) → x,y = x′,y′ → X)
injective_left.Product added as elimination rule (abbrev: Product , op-
tions: -i -n )

5.2 Projections
5.2.1 Definitions
Projections are introduced using the definite description operator on these
predicates :

Definition 5.6
fstP z x := ∃y z = x,yfstP z x

Definition 5.7
sndP z y := ∃x z = x,ysndP z y

Definition 5.8 projections defined as functions
• first projection fst z := Δx

fstP z xfst z

• second projection snd z := Δy
sndP z ysnd z

Then using the properties of the definite description, we prove the fol-
lowing facts.

Fact 5.9 fst.Product property defining first projection

∀x ∀y fst (x,y) = x

Fact 5.10 snd.Product property defining second projection

∀x ∀y snd (x,y) = y

We add these propositions as rewriting rules and we close the definition
of fst and snd
fst.Product added as equation
snd.Product added as equation

Definition 5.11
List of theorems: calcul.Product := fst.Product snd.Product
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5.2.2 Very basic facts
We also prove the following propositions :

Fact 5.12 fst.total.Product first projection is always defined on a product

∀A ∀B ∀p∶(A × B) A (fst p)

fst.total.Product added as introduction rule (abbrev: fst , options: -t )

Fact 5.13 snd.total.Product second projection is always defined on a prod-
uct

∀A ∀B ∀p∶(A × B) B (snd p)

snd.total.Product added as introduction rule (abbrev: snd , options: -t )

Fact 5.14 surjective.Product Reconstruction of a product from its projec-
tions

∀A ∀B ∀x∶(A × B) fst x,snd x = x

surjective.Product added as equation
The two first are added as totality rule and the last one is added as

rewriting rule

5.3 Lexicographic ordering
Definition 5.15

lex R1 R2 c1 c2 := R1 (fst c1) (fst c2) ∨ fst c1 = fst c2 ∧ R2 (snd c1) (snd c2) lex R1 R2 c1 c2
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Chapter 6

Sums

6.1 Basic definitions
To define the sums (disjoint ∪) of two predicates, we extend the language
with two unary function symbols inl x and inr x .

Sort 6.1

sum[’a,’b]

Constant 6.2

inl : ’a → sum[’a, ’b]inl

Constant 6.3

inr : ’b → sum[’a, ’b]inr

Definition 6.4 Sum of predicates

(A ⊕ B) z := ∀X (∀x∶A X (inl x) → ∀y∶B X (inr y) → X z)Sum A B z

Axiom 6.5

• inl.injective.Sum: inl is injective

∀x,y (inl x = inl y → x = y)

• inr.injective.Sum: inr is injective

∀x,y (inr x = inr y → x = y)
0written by: Christophe Raffalli, Paul Roziere (Equipe de Logique, Université Cham-

béry, Paris VII)
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• inl_not_inr.Sum: inl x is not inr y

∀x ∀y inl x ≠ inr y

inl_not_inr.Sum added as elimination rule (abbrev: inl_not_inr , op-
tions: -i -n )

The last claim is added as invertible elimination rule.

Fact 6.6 Introduction rules for sums

• intro_left.Sum:
∀A ∀B ∀x∶A (A ⊕ B) (inl x)

• intro_right.Sum:

∀A ∀B ∀y∶B (A ⊕ B) (inr y)

intro_left.Sum added as introduction rule (abbrev: l , options: -c )
intro_right.Sum added as introduction rule (abbrev: r , options: -c )

Fact 6.7 elimination rules for sums

• elim.Sum:

∀X ∀A ∀B ∀z (∀x∶A (z = inl x → X) →
∀y∶B (z = inr y → X) → (A ⊕ B) z → X)

• inl.injective_left.Sum:

∀X ∀x,y ((x = y → X) → inl x = inl y → X)

• inr.injective_left.Sum:

∀X ∀x,y ((x = y → X) → inr x = inr y → X)

• inr_not_inl.Sum:
∀x ∀y inr x ≠ inl y

elim.Sum added as elimination rule (abbrev: e , options: -i )
inr_not_inl.Sum added as elimination rule (abbrev: inr_not_inl ,
options: -i -n )
inl.injective_left.Sum added as elimination rule (abbrev: inl.injective ,
options: -i -n )
inr.injective_left.Sum added as elimination rule (abbrev: inr.injective ,
options: -i -n )

These four rules and are added as invertible elimination rules.
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6.2 Matching
We define

Definition 6.8

caseP f g z r := ∀x (z = inl x → r = f x) ∧ ∀y (z = inr y → r = g y)caseP f g z r

and we prove the following:
Using the definite description, we define:

Definition 6.9 match function on sums

case f g z := Δr
caseP f g z rcase f g z

Then using the properties of the definite description, we prove the fol-
lowing propositions.

Fact 6.10 Characteristic properties of case

• case.left.Sum: match left part of the sum

∀f ∀g ∀x case f g (inl x) = f x

• case.right.Sum: match right part of the sum

∀f ∀g ∀y case f g (inr y) = g y

case.left.Sum added as equation
case.right.Sum added as equation

we add these facts as rewriting rules and we close the definition of case .
We also prove :

Fact 6.11 case.total.Sum case is well defined on sums

∀A ∀B ∀C ∀f∶(A ⇒ C) ∀g∶(B ⇒ C) ∀z∶(A ⊕ B) C (case f g z)

case.total.Sum added as introduction rule (abbrev: case , options: -t )
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Chapter 7

Lists

7.1 Basic definitions and properties
7.1.1 Definitions and axioms
To define lists, we extend the language with one constant symbols [nil] and
one binary function symbol [ x :: l ].

Sort 7.1
list[’a]

Constant 7.2 empty list
∅ : list[’a] nil

Constant 7.3 cons
x∶∶y : ’a → list[’a] → list[’a] x :: y

Then the list predicate is defined as follows:

Definition 7.4
(ILD) x := ∀X (X ∅ → ∀a∶D ∀y∶X X (a∶∶y) → X x) List D x

We assume the following.

Axiom 7.5
• nil_not_cons.List: empty list ∅ is not a ∶∶ (cons)

∀x ∀l ∅ ≠ x∶∶l

• cons.injective.List: injectivity of list constructor ∶∶ (cons)

∀x1 ∀l1 ∀x2 ∀l2 (x1∶∶l1 = x2∶∶l2 → x1 = x2 ∧ l1 = l2)
0written by: Christophe Raffalli, Paul Roziere (Equipe de Logique, Université Cham-

béry, Paris VII)
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7.1.2 Rules on lists
We prove the introduction and elimination rules for lists.

These rules are added respectively as introdution and elimination rules,
with the given abbreviations.

Introduction rules

Fact 7.6 nil.total.List nil is a list

∀D (ILD) ∅

Fact 7.7 cons.total.List ∶∶ (cons) is well defined

∀D ∀a∶D ∀l∶(ILD) (ILD) (a∶∶l)

nil.total.List added as introduction rule (abbrev: nil , options: -i -c )
cons.total.List added as introduction rule (abbrev: cons , options: -i -c )

Elimination rules

Fact 7.8 rec.List structural induction on lists

∀D ∀X (X ∅ → ∀a∶D ∀l′∶(ILD) (X l′ → X (a∶∶l′)) → ∀l∶(ILD) X l)

Fact 7.9 case.List reasoning by cases on the structure of lists

∀D ∀l∶(ILD) (l = ∅ ∨ ∃d∶D ∃l′∶(ILD) l = d∶∶l′)

Fact 7.10 case_left.List

∀D ∀X ∀l ((l = ∅ → X ∅) → ∀d∶D ∀l′∶(ILD) (l = d∶∶l′ → X (d∶∶l′)) →
(ILD) l → X l

)

rec.List added as elimination rule (abbrev: rec , options: )
case_left.List added as elimination rule (abbrev: case , options: -n )
case.List added as elimination rule (abbrev: ocase , options: -n )

Left rules (eliminating list constructors)

Fact 7.11 cons_not_nil.List ∶∶ (cons) is not ∅

∀x ∀l x∶∶l ≠ ∅

Fact 7.12 cons.injective_left.List injectivity of list constructor (rule form)

∀X ∀x1,x2 ∀l1,l2 ((x1 = x2 → l1 = l2 → X) → x1∶∶l1 = x2∶∶l2 → X)
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These two facts and the first claim are added as invertible left rules. We
close then definition of lists.
nil_not_cons.List added as elimination rule (abbrev: nil_not_cons , op-
tions: -i -n )
cons_not_nil.List added as elimination rule (abbrev: cons_not_nil , op-
tions: -i -n )
cons.injective_left.List added as elimination rule (abbrev: cons.injective_left ,
options: -i -n )

Fact 7.13 cons.left.List

∀X ∀A ∀a ∀l ((A a → (ILA) l → X) → (ILA) (a∶∶l) → X)

cons.left.List added as elimination rule (abbrev: cl , options: -i -n )

7.1.3 Decidability of equality
Fact 7.14 eq_dec.List equality is decidable on lists

∀D∶equal.decidable equal.decidable (ILD)

eq_dec.List added as introduction rule (abbrev: List , options: -i -t )

7.2 Defining functions by induction on lists
7.2.1 Definition
In order to introduce definition of functions by structural induction on list
we will use the operator Δ of definite description. We then first introduce
the following predicate.

The predicate DEF𝑟𝑒𝑐
IL a f l z defines a function which maps the list l to z

using structural induction on the list l with a as base case (when l = ∅) and
f for the cons case.

Definition 7.15 definition by induction on lists : predicate version

DEF𝑟𝑒𝑐
IL a f l z := ∀X (X ∅ a → ∀l0∶(IL�x ⊤) ∀x ∀r∶(X l0) X (x∶∶l0) (f x l0 r) →

X l z) def_rec_P.List a f l z

Note: you should remark the use of 𝜆x ⊤ to use lists of *anything* !
We prove then that DEF𝑟𝑒𝑐

IL a f l z effectively defines a function.
The main theorem about untyped list is the following.

Fact 7.16 True.List Untyped list

∀D ∀l∶(ILD) (IL𝜆x ⊤) l
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True.List added as introduction rule (abbrev: True , options: -o 1.0 )
We add it as an introduction rule.
Using the definite description, we can now define an operator def𝑟𝑒𝑐

IL that
introduces a function symbol def𝑟𝑒𝑐

IL a f for any definition by induction on
lists !

Definition 7.17 definition by induction on list

def𝑟𝑒𝑐
IL a f l := Δz

DEF𝑟𝑒𝑐
IL a f l zdef_rec.List a f l

Using the properties of the definite description, we can prove the follow-
ing.

Fact 7.18 Characteristic properties of definitions by induction

• def_rec.nil.List: characteristic property of definition by induction on
list : base case

∀f ∀a def𝑟𝑒𝑐
IL a f ∅ = a

• def_rec.cons.List: characteristic property of definition by induction on
list : recurrence step

∀f ∀a ∀x ∀l∶(IL𝜆x ⊤) def𝑟𝑒𝑐
IL a f (x∶∶l) = f x l (def𝑟𝑒𝑐

IL a f l)

def_rec.nil.List added as equation
def_rec.cons.List added as equation

These theorems are added as rewriting rules and then the definition of
def𝑟𝑒𝑐

IL is closed
We can now prove the totality of any definition by induction:

Fact 7.19 def_rec.total.List Totality of a function defined by induction on
lists

∀X ∀D ∀f∶(D ⇒ (ILD) ⇒ X ⇒ X) ∀a∶X ∀l∶(ILD) X (def𝑟𝑒𝑐
IL a f l)

def_rec.total.List added as introduction rule (abbrev: def_rec , options:
-t )

7.2.2 Application : operations on lists
The append function

Definition 7.20

l @ l′ := def𝑟𝑒𝑐
IL l′ 𝜆d,l0,r (d∶∶r) ll @ l'
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We prove the following properties of l @ l′.

Fact 7.21 Characteristic properties of @
• append.lnil.List:

∀l ∅ @ l = l

append.lnil.List added as equation

• append.lcons.List:

∀a ∀l∶(IL𝜆x ⊤) ∀l′ a∶∶l @ l′ = a∶∶(l @ l′)

append.lcons.List added as equation

Fact 7.22 append.total.List totality of @

∀D ∀l,l′∶(ILD) (ILD) (l @ l′)

append.total.List added as introduction rule (abbrev: append , options:
-i -t )

Fact 7.23 append.rnil.List

∀l∶(IL𝜆x ⊤) l @ ∅ = l

append.rnil.List added as equation

Fact 7.24 append.associative.List associativity of @

∀x,y,z∶(IL𝜆x ⊤) (x @ y) @ z = x @ y @ z

append.associative.List added as equation

The map functional

We define :

Definition 7.25

map f l := def𝑟𝑒𝑐
IL ∅ 𝜆a,l0,r (f a∶∶r) l map f l

Fact 7.26 Characteristics properties of map.

• map.nil.List:
∀f map f ∅ = ∅

• map.cons.List:

∀f ∀a ∀l∶(IL𝜆x ⊤) map f (a∶∶l) = f a∶∶map f l
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map.nil.List added as equation
map.cons.List added as equation

Fact 7.27 map.total.List totality of map

∀D ∀D′ ∀f∶(D ⇒ D′) ∀l∶(ILD) (ILD′) (map f l)

map.total.List added as introduction rule (abbrev: map , options: -i -t )

Fact 7.28 map.append.List map on @

∀f ∀l1,l2∶(IL𝜆x ⊤) map f (l1 @ l2) = map f l1 @ map f l2

map.append.List added as equation

7.2.3 Head and tail of a list as partial functions
Definitions

Definition 7.29 graph of head

headP l a := ∃l′ l = a∶∶l′headP l a

Definition 7.30 graph of tail

tailP l l′ := ∃a l = a∶∶l′tailP l l'

Definition 7.31 head

head l := Δz
headP l zhead l

Definition 7.32 tail

tail l := Δz
tailP l ztail l

Basic facts

Fact 7.33 head.cons.List Characteristic property of head

∀D ∀a∶D ∀l∶(ILD) head (a∶∶l) = a

head.cons.List added as equation

Fact 7.34 tail.cons.List Characteristic property of tail

∀D ∀a∶D ∀l∶(ILD) tail (a∶∶l) = l

tail.cons.List added as equation
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Fact 7.35 head.total.List totality of head on its definition set

∀D ∀l∶(ILD) (l ≠ ∅ → D (head l))
Fact 7.36 tail.total.List totality of tail on its definition set

∀D ∀l∶(ILD) (l ≠ ∅ → (ILD) (tail l))
head.total.List added as introduction rule (abbrev: head , options: -t )
tail.total.List added as introduction rule (abbrev: tail , options: -i -t )

Fact 7.37 cons_head_tail.List
∀D ∀l∶(ILD) (l ≠ ∅ → head l∶∶tail l = l)

cons_head_tail.List added as equation

7.2.4 Quantifiers bounded on lists.
Existence in a list

Definition
Definition 7.38 there exists x:D in l
Exists D l := ∀X (∀a ∀l0 (D a → X (a∶∶l0)) → ∀a ∀l0∶X X (a∶∶l0) → X l) Exists D l

Introduction rules
Fact 7.39 Exists.lcons.List left introducing Exists

∀D ∀a ∀l (D a → Exists D (a∶∶l))
Fact 7.40 Exists.rcons.List right introducing Exists

∀D ∀a ∀l∶(Exists D) Exists D (a∶∶l)
Exists.lcons.List added as introduction rule (abbrev: Exists.lcons , op-
tions: )
Exists.rcons.List added as introduction rule (abbrev: Exists.rcons , op-
tions: )

Elimination rules
Fact 7.41 Exists.nil.List Nothing in ∅

∀D (¬) (Exists D ∅)
Fact 7.42 Exists.elim_cons.List eliminating Exists in cons

∀D ∀a ∀l (Exists D (a∶∶l) → D a ∨ Exists D l)
Exists.nil.List added as elimination rule (abbrev: Exists.nil , options: )
Exists.elim_cons.List added as elimination rule (abbrev: Exists_cons ,
options: )
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Existence in append

Fact 7.43 Exists.lappend.List left introducing Exists in @

∀D ∀l∶(IL𝜆x ⊤) ∀l′ (Exists D l → Exists D (l @ l′))

Fact 7.44 Exists.rappend.List right introducing Exists in @

∀D ∀l∶(IL𝜆x ⊤) ∀l′∶(Exists D) Exists D (l @ l′)

Exists.lappend.List added as introduction rule (abbrev: Exists.lappend ,
options: )
Exists.rappend.List added as introduction rule (abbrev: Exists.rappend ,
options: )

Fact 7.45 Exists.elim_append.List eliminating Exists in @

∀D ∀l∶(IL𝜆x ⊤) ∀l′ (Exists D (l @ l′) → Exists D l ∨ Exists D l′)

Exists.elim_append.List added as elimination rule (abbrev: Exists.elim_append ,
options: )

Universal quantifer bounded on a list

Universal closure of the predicate D on the list l is exactly List D l

Definition 7.46 Forall x such that D in l

Forall := ILForall

Results on list can then be reinterpreted, for instance ∀D (ILD) ∅ is
∀D forall D ∅.

It is also the case of the following facts.

Fact 7.47 List_increasing introducing list of a type stronger

∀A,B (∀x∶A B x → ∀l∶(ILA) (ILB) l)

List_increasing added as elimination rule (abbrev: inc , options: -t )

Fact 7.48 List_conjunction list of objects of type A ∧ B

∀A,B ∀l∶(ILA) ((ILB) l → (IL𝜆x (A x ∧ B x)) l)

7.2.5 Membership in a list
All facts are trivially derived as particular cases of analogous ones with
Exists .
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Introduction rules

Definition 7.49 membership in list

Mem x l := Exists (= x) l Mem x l

Fact 7.50 Mem.lcons.List left introducing Mem in cons

∀a ∀l Mem a (a∶∶l)

Fact 7.51 Mem.rcons.List right introducing Mem in cons

∀b,a ∀l∶(Mem b) Mem b (a∶∶l)

Mem.lcons.List added as introduction rule (abbrev: Mem.lcons , options:
)

Mem.rcons.List added as introduction rule (abbrev: Mem.rcons , options:
)

Elimination rules

Fact 7.52 Mem.nil.List no member of nil

∀x (¬) (Mem x ∅)

Fact 7.53 Mem.elim_cons.List eliminating Mem in cons

∀b,a ∀l (Mem b (a∶∶l) → b = a ∨ Mem b l)

Mem.nil.List added as elimination rule (abbrev: Mem.nil , options: )
Mem.elim_cons.List added as elimination rule (abbrev: Mem_cons , options:

)

Membership in append

Fact 7.54 Mem.lappend.List left introducing Mem in @

∀b ∀l∶(IL𝜆x ⊤) ∀l′ (Mem b l → Mem b (l @ l′))

Fact 7.55 Mem.rappend.List right introducing Mem in @

∀b ∀l∶(IL𝜆x ⊤) ∀l′∶(Mem b) Mem b (l @ l′)

Fact 7.56 Mem.elim_append.List eliminating Mem in @

∀b ∀l∶(IL𝜆x ⊤) ∀l′ (Mem b (l @ l′) → Mem b l ∨ Mem b l′)
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7.3 Data type of list of length n

7.4 Some functions using integers
we will define a partial function that return the (n-1)-th element of a given
list (the first element is at position 0).

Definition 7.57 l truncated after n-th element

nthl := 𝜆l (def𝑟𝑒𝑐
IN l 𝜆n,l (tail l))nthl

Definition 7.58 (n-1)-th element of l

nth := 𝜆l,n (head (nthl l n))nth

Fact 7.59 characteristic properties of nthl and nth

• nthl.N0.List:
∀D ∀l∶(ILD) ∀n∶IN nthl l 0 = l

• nthl.S.List:

∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nthl (a∶∶l) (S n) = nthl l n

• nth.N0.List:

∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nth (a∶∶l) 0 = a

• nth.S.List:

∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nth (a∶∶l) (S n) = nth l n

7.5 Some functions using integers
7.5.1 Length of a list
The length of a list is defined by :

Definition 7.60

length l := def𝑟𝑒𝑐
IL 0 𝜆x,l0,r (S r) llength l

Fact 7.61 Characteristic properties of length

• length.nil.List:
length ∅ = 0

length.nil.List added as equation
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• length.cons.List:

∀a ∀l∶(IL𝜆x ⊤) length (a∶∶l) = S length l

length.cons.List added as equation

Fact 7.62 length.total.List totality of length

∀l∶(IL𝜆x ⊤) IN (length l)

length.total.List added as introduction rule (abbrev: length , options: -i -t )

Fact 7.63 length.append.List length on @ is +

∀l,l′∶(IL𝜆x ⊤) length (l @ l′) = length l + length l′

length.append.List added as equation

Fact 7.64 length.map.List

∀D ∀f ∀l∶(ILD) length (map f l) = length l

length.map.List added as equation

Fact 7.65 length_elim.N0.List l with length 0 is nil

∀X ∀l∶(IL𝜆x ⊤) ((l = ∅ → X) → length l = 0 → X)

Fact 7.66 length_elim.S.List l with length > 0 is a cons

∀X ∀D ∀l∶(ILD) (∀l′∶(ILD) ∀a∶D (l = a∶∶l′ → X) → 0 < length l → X)

length_elim.N0.List added as elimination rule (abbrev: length_elim.N0 ,
options: )
length_elim.S.List added as elimination rule (abbrev: length_elim.S , op-
tions: )

7.5.2 n-th element of a list as partial function
we will define a partial function that return the (n-1)-th element of a given
list (the first element is at position 0).

Constant 7.67 l truncated before n-th element

nthl : list[’a] → nat → list[’a] nthl

Constant 7.68 (n-1)-th element of l
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nth : list[’a] → nat → ’anth

Axiom 7.69 characteristic properties of nthl and nth
• nthl.N0.List:

∀D ∀l∶(ILD) ∀n∶IN nthl l 0 = l

• nthl.S.List:
∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nthl (a∶∶l) (S n) = nthl l n

• nth.N0.List:
∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nth (a∶∶l) 0 = a

• nth.S.List:
∀D ∀l∶(ILD) ∀a∶D ∀n∶IN nth (a∶∶l) (S n) = nth l n

nthl.N0.List added as equation
nthl.S.List added as equation
nth.N0.List added as equation
nth.S.List added as equation

Fact 7.70 nthl.tail.List
∀D ∀l∶(ILD) ∀a∶D ∀n∶IN tail (nthl (a∶∶l) n) = nthl l n

Fact 7.71 nthl.total.List totality of nthl on its definition set
∀D ∀l∶(ILD) ∀n∶IN (n ≤ length l → (ILD) (nthl l n))

length.total.List added as introduction rule (abbrev: nthl , options: -t -i )

Fact 7.72 length.nthl.List length of nthl l n
∀D ∀n∶IN ∀l∶(ILD) (n ≤ length l → length (nthl l n) = length l − n)

length.nthl.List added as equation

Fact 7.73 head.nthl.List nth is head of nthl
∀D ∀l∶(ILD) ∀n∶IN (n < length l → nth l n = head (nthl l n))

length.nthl.List added as equation

Fact 7.74 nth.total.List totality of nth on its definition set
∀D ∀l∶(ILD) ∀n∶IN (n < length l → D (nth l n))

nth.total.List added as introduction rule (abbrev: nth , options: -t -i )

Fact 7.75 lenght_induction.List

∀A ∀X (∀l∶(ILA) (∀l′∶(ILA) (length l′ < length l → X l′) → X l) →
∀l∶(ILA) X l

)
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Chapter 8

Quotient

8.1 Basic definitions
Sort 8.1

set

Constant 8.2

D : set → prop D

Constant 8.3

R : set → set → prop R

Axiom 8.4 refl.Q
reflexive DR

Axiom 8.5 sym.Q
symmetric D R

Axiom 8.6 trans.Q
transitive DR

Definition 8.7

Q X := ∃x∶D X x ∧ ∀x∶X D x ∧ ∀x,y∶D (R x y → X x →
X y) ∧ ∀x,y (X x → X y → R x y) Q X

Definition 8.8

class x y := D y ∧ R x y class x y
0written by: Christophe Raffalli (Paris VII & Paris XII university)
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Proposition 8.9 class.Q

∀x∶D Q (class x)

class.Q added as introduction rule (abbrev: class , options: -c )

Proposition 8.10 equal.class.Q

∀x,y∶D (R x y → class x = class y)

equal.class.Q added as equation

Proposition 8.11 class.inj.Q

∀x,y∶D (class x = class y → R x y)

Proposition 8.12 class.elim

∀X ∀x (∀z∶D (∀z′∶x D z′ → ∀z′∶x R z z′ → x z → x = class z → X) →
Q x → X )

class.elim added as elimination rule (abbrev: rec , options: -i )

Proposition 8.13 equal.Q

∀x,y∶Q (∀x′,y′∶D (x x′ → y y′ → R x′ y′) → x = y)

equal.Q added as introduction rule (abbrev: equal , options: -i )

8.2 Compatible fonctions
Definition 8.14

Compatible f R := ∀x,y∶D (R x y → f x = f y)Compatible f R

Definition 8.15

Lift f c z := ∀x∶c z = f xLift f c z

Proposition 8.16 lift.compatible.Q

∀f (Compatible f R → ∀c∶Q ∃!z Lift f c z)

Definition 8.17

lift f c := Δ (Lift f c)lift f c
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Proposition 8.18 lift.total.Q

∀D′ ∀f∶(D ⇒ D′) (Compatible f R → ∀c∶Q D′ (lift f c))

lift.total.Q added as introduction rule (abbrev: total , options: -c )

Proposition 8.19 lift.prop

∀f (Compatible f R → ∀x∶D lift f (class x) = f x)

lift.prop added as equation

Proposition 8.20 class.eq.Q

∀x∶Q ∃x′∶x x = class x′
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Chapter 9

About the axiom of choice

Axiom 9.1 AC
∀Q (∃z Q z → Q (Δ Q))

Definition 9.2

Def21
Q := Δx

∃y Q x yDef2_1 Q

Definition 9.3

Def22
Q := Δy

Q (Def21 Q) yDef2_2 Q

Fact 9.4 AC2

∀Q (∃x ∃y Q x y → Q (Def21
Q) (Def22

Q))

Definition 9.5

Chaine X R C := ∃x C x ∧ C X ∧ ∀x,y∶C (R x y ∨ R y x)Chaine X R C

Theorem 9.6 Zorn

∀X ∀R (∃x X x → order X R → ∀C∶(Chaine X R) ∃m∶X ∀y∶C R y m →
∃M∶X ∀x∶X (R M x → M = x) )

Theorem 9.7 Zermelo

∀X ∃R well.order X R

0written by: Christophe Raffalli (Paris VII 𝜆∧ Paris XII university)
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